Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: S. D. Miller x
  • All content x
Clear All Modify Search
C. M. R. Platt, D. M. Winker, M. A. Vaughan, and S. D. Miller

Abstract

Cloud-integrated attenuated backscatter from observations with the Lidar In-Space Technology Experiment (LITE) was studied over a range of cirrus clouds capping some extensive mesoscale convective systems (MCSs) in the Tropical West Pacific. The integrated backscatter when the cloud is completely attenuating, and when corrected for multiple scattering, is a measure of the cloud particle backscatter phase function.

Four different cases of MCS were studied. The first was very large, very intense, and fully attenuating, with cloud tops extending to 17 km and a maximum lidar pulse penetration of about 3 km. It also exhibited the highest integrated attenuated isotropic backscatter, with values in the 532-nm channel of up to 2.5 near the center of the system, falling to 0.6 near the edges. The second MCS had cloud tops that extended to 14.8 km. Although MCS2 was almost fully attenuating, the pulse penetration into the cloud was up to 7 km and the MCS2 had a more diffuse appearance than MCS1. The integrated backscatter values were much lower in this system but with some systematic variations between 0.44 and 0.75. The third MCS was Typhoon Melissa. Values of integrated backscatter in this case varied from 1.64 near the eye of the typhoon to between 0.44 and 1.0 in the areas of typhoon outflow and in the 532-nm channel. Mean pulse penetration through the cloud top was 2–3 km, the lowest penetration of any of the systems. The fourth MCS consisted of a region of outflow from Typhoon Melissa. The cloud was semitransparent for more than half of the image time. During that time, maximum cloud depth was about 7 km. The integrated backscatter varied from about 0.38 to 0.63 in the 532-nm channel when the cloud was fully attenuating.

In some isolated cirrus between the main systems, a plot of integrated backscatter against one minus the two-way transmittance gave a linear dependence with a maximum value of 0.35 when the clouds were fully attenuating. The effective backscatter-to-extinction ratios, when allowing for different multiple-scattering factors from space, were often within the range of those observed with ground-based lidar. Exceptions occurred near the centers of the most intense convection, where values were measured that were considerably higher than those in cirrus observed from the surface. In this case, the values were more compatible with theoretical values for perfectly formed hexagonal columns or plates. The large range in theoretically calculated backscatter-to-extinction ratio and integrated multiple-scattering factor precluded a closer interpretation in terms of cloud microphysics.

Full access
C. M. R. Platt, S. A. Young, R. T. Austin, G. R. Patterson, D. L. Mitchell, and S. D. Miller

Abstract

This paper presents further results on the optical properties of tropical and equatorial cirrus using the light detecting and ranging (lidar) radiometer (LIRAD) method. The results were obtained from observations in the Maritime Continent Thunderstorm Experiment (MCTEX). Values were obtained of cirrus cloud backscatter coefficient, infrared (IR) emittance, optical depth and absorption coefficient, cloud height and depth, and backscatter-to-extinction ratio. The values agree well with previous results obtained on equatorial cirrus in the Pilot Radiation Observation Experiment (PROBE) and extend those results to lower temperatures. Observations made of lidar linear depolarization ratio show similar trends to those observed in PROBE, extending those results to lower temperatures.

Regressions of cloud IR emittance and absorption coefficients are performed as a preliminary tropical dataset for both cloud-resolving and climate models. These regressions are compared with previous regressions on midlatitude and tropical synoptic cirrus clouds. The IR absorption coefficients in tropical and equatorial cirrus appear to be larger than in midlatitude cirrus for temperatures less than −40°C, with the difference increasing toward low temperatures. Thus, a significantly different relationship may be appropriate for tropical cirrus compared to midlatitude cirrus clouds.

Effective diameters of small particles in the colder tropical clouds are also measured using the ratio of visible extinction to infrared absorption. A new treatment of multiple scattering is used to correct the ratios. Effective diameters range from 6 to 9.3 μm at the colder temperatures.

Full access
Michael A. Alexander, Uma S. Bhatt, John E. Walsh, Michael S. Timlin, Jack S. Miller, and James D. Scott

Abstract

The influence of realistic Arctic sea ice anomalies on the atmosphere during winter is investigated with version 3.6 of the Community Climate Model (CCM3.6). Model experiments are performed for the winters with the most (1982/83) and least (1995/96) Arctic ice coverage during 1979–99, when ice concentration estimates were available from satellites. The experiments consist of 50-member ensembles: using large ensembles proved critical to distinguish the signal from noise.

The local response to ice anomalies over the subpolar seas of both the Atlantic and Pacific is robust and generally shallow with large upward surface heat fluxes (>100 W m−2), near-surface warming, enhanced precipitation, and below-normal sea level pressure where sea ice receded, and the reverse where the ice expanded. The large-scale response to reduced (enhanced) ice extent to the east (west) of Greenland during 1982/83 resembles the negative phase of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) with a ridge over the poles and a trough at midlatitudes. The large-scale response was distinctly different in the Pacific, where ice extent anomalies in the Sea of Okhotsk generate a wave train that extends downstream over North America but the wave train response is greatly diminished when the model is driven by ice concentration rather than ice extent anomalies. Comparing the AGCM response to observations suggests that the feedback of the ice upon the atmospheric circulation is positive (negative) in the Pacific (Atlantic) sector. The magnitude of the wintertime response to ice extent anomalies is modest, on the order of 20 m at 500 mb. However, the 500-mb height anomalies roughly double in strength over much of the Arctic when forced by ice concetration anomalies. Furthermore, the NAO-like response increases linearly with the aerial extent of the Atlantic ice anomalies and thus could be quite large if the ice edge retreats as a result of global warming.

Full access
R. K. Scott, J. S. Allen, G. D. Egbert, and R. N. Miller

Abstract

An idealized, linear model of the coastal ocean is used to assess the domain of influence of surface type data, in particular how much information such data contain about the ocean state at depth and how such information may be retrieved. The ultimate objective is to assess the feasibility of assimilation of real surface current data, obtained from coastal radar measurements, into more realistic dynamical models. The linear model is used here with a variational inverse assimilation scheme, which is optimal in the sense that under appropriate assumptions about the errors, the maximum possible information is retrieved from the surface data. A comparison is made between strongly and weakly constrained variational formulations. The use of a linear model permits significant analytic progress. Analysis is presented for the solution of the inverse problem by expanding in terms of representer functions, greatly reducing the dimension of the solution space without compromising the optimization. The representer functions also provide important information about the domain of influence of each data point, about optimal location and resolution of the data points, about the error statistics of the inverse solution itself, and how that depends upon the error statistics of the data and of the model. Finally, twin experiments illustrate how well a known ocean state can be reconstructed from sampled data. Consideration of the statistics of an ensemble of such twin experiments provides insight into the dependence of the inverse solution on the choice of weights, on the data error, and on the sampling resolution.

Full access
A. L. Kurapov, G. D. Egbert, R. N. Miller, and J. S. Allen

Abstract

The performance of data assimilation methods in an idealized three-dimensional time-dependent coastal baroclinic model is assessed by computing ensemble error statistics. The analytical representer solution allows for computation of posterior error statistics for the variational generalized inverse method (GIM) as well as sequential methods such as the Kalman filter (KF) and optimal interpolation (OI). Computations can be made in a straightforward way, given the statistics of errors in the model equations and data. The GIM yields solutions with significantly smaller variance than that given by KF or OI if the data contain valuable information about the past flow. This is the case, for instance, when a large fraction of the model error is due to uncertainty in the wind stress. In the scope of the model presented here, the plausibility of simplifications made in a practical OI scheme is analyzed. The unified study of the GIM, KF, and OI allows for the demonstratation of how the forecast error covariance used in a practical OI sequential scheme may be optimized with the use of lagged covariances for the model solution. The effect of the misspecified input error statistics on the solution quality is also assessed. In some practically relevant cases the use of future data by the GIM, in contrast to KF and OI, compensates for incorrectly specified input error covariances.

Full access
Peter R. Oke, J. S. Allen, R. N. Miller, and G. D. Egbert

Abstract

Sixty-day simulations of the subinertial continental shelf circulation off Oregon are performed for a hindcast study of summer 1999. In Part I, the model results are shown to compare favorably with in situ currents and hydrographic measurements obtained from an array of moored instruments and field surveys and high-frequency radar–derived surface currents. In this paper, the modeled three-dimensional, time-varying circulation and dynamical balances are analyzed, providing a detailed synoptic description of the continental shelf circulation off Oregon for summer 1999. The circulation is clearly wind driven and strongly influenced by alongshore variations in shelf topography. In the region of the coast where the alongshore topographic variations are small the upwelling circulation is consistent with standard conceptual models for two-dimensional across-shore circulation. In the regions where the alongshore topographic variations are greater, the upwelling circulation is highly three-dimensional. Over Heceta Bank the upwelling circulation is complicated, with weaker direct coupling to the wind forcing over most of the shelf. It is demonstrated that the upwelled water that is found over the midshelf off Newport is upwelled to the north and is advected to the south. Additionally, upwelled water over Heceta Bank is drawn from a different location to the south. The dynamical balances over the inner shelf are divided into two regimes; in the coastal jet and inshore of the coastal jet. In the coastal jet the tendency of the alongshore depth-averaged velocity V t is large and is driven by the difference between the surface and bottom stresses during upwelling. Inshore of the coastal jet, V t is small and is driven by the difference between the surface stress and a negative alongshore pressure gradient during upwelling. When the wind stress becomes small after upwelling, V t is primarily balanced by the negative alongshore pressure gradient and a northward flow is generated. Subsequently, the alongshore pressure gradient decreases, the flow becomes geostrophic, and the northward flow persists until the next significant event. A region to the south of Newport over the inner shelf is identified as the region where the northward momentum is initially generated.

Full access
A. L. Kurapov, J. S. Allen, G. D. Egbert, and R. N. Miller

Abstract

Results from a model of wind-driven circulation are analyzed to study spatial and temporal variability in the bottom mixed layer (BML) on the mid-Oregon shelf in summer 2001. The model assimilates acoustic Doppler profiler velocities from two cross-shore lines of moorings 90 km apart to provide improved accuracy of near-bottom velocities and turbulence variables in the area between the mooring lines. Model results suggest that the response of the BML thickness to upwelling- and downwelling-favorable winds differs qualitatively between an area of “simple” bathymetric slope at 45°N and a wider shelf area east of Stonewall Bank (44.5°N). At 45°N, the BML grows in response to downwelling-favorable conditions, in agreement with known theories. East of Stonewall Bank, the BML thickness is increased following upwelling events. In this area, the southward upwelling jet detaches from the coast and flows over a wider part of the Oregon shelf, creating conditions for Ekman pumping near the bottom. Based on computations of bottom stress curl, the vertical pumping velocity in this area may reach 15 m day−1 following periods of intensified upwelling-favorable winds. A column of denser, near-bottom water upwelled over the Ekman flow convergence area is tilted as a result of vertical shear in horizontal velocities, causing unstable stratification and convective overturning. As a result of this process, BML thickness values east of Stonewall Bank can be in excess of 20 m following upwelling, comparable to maximum values at 45°N following downwelling.

Full access
A. S. Dennis, J. R. Miller Jr., D. E. Cain, and R. L. Schwaller

Abstract

Rainfall data collected at 67 gages in a 2750 mi2 target area during a four-year randomized cloud seeding experiment in North Dakota have been stratified in a variety of ways and subjected to several kinds of statistical tests. Some stratifications related to cloud model predictions were possible for only the last two years when a rawinsonde station was operated as part of the project. Monte Carlo experiments simulating 500 reruns of the four-year experiment have been used to establish significance levels for the tests within each data stratification.

The analysis provides significant evidence that seeding convective clouds on a determinate set of days leads to 1) an increase in the frequency of rainfall events at the individual target gages, 2) an increase in the average rainfall recorded per rainfall event, and 3) an increase in total rainfall on the target. The set of days to which this evidence applies is those days with dynamic seedability; that is, days for which a cloud model predicted an increase in cloud top height under the influence of silver iodide seeding. Rainfall observations on days when the cloud model predicted no increase in cloud height show no significant differences between seed and no-seed days.

The possibility of bias has been checked by comparing the frequencies of wet and dry days and the averages of several meteorological variables for seed and no-seed days within each stratification, by cross-checking the stratifications, and by comparing rainfall on seed and no-seed days over an area of roughly 50,000 square miles surrounding the target area. There is no obvious bias to account for the significant differences between seed and no-seed days with dynamic seedability.

It is tentatively concluded that dynamic effects, including rainfall increases, were produced by light to moderate silver iodide seeding from below cloud base. The potential rainfall increase resulting from seeding below selected clouds on days with dynamic seedability is estimated at one inch per growing season.

Full access
Scott D. Miller, Tihomir S. Hristov, James B. Edson, and Carl A. Friehe

Abstract

Platform motion contaminates turbulence statistics measured in the surface layer over the ocean and therefore adds uncertainty to the understanding and parameterization of air–sea exchange. A modification to the platform motion–correction procedure of Edson et al. is presented that explicitly accounts for misalignment between anemometers and motion sensors. The method is applied to a high-resolution dataset, including four levels of turbulence within 20 m of the ocean surface, measured over deep ocean waves using the stable research platform R/P FLIP. The average error magnitude of the air–sea momentum flux (wind stress) from the four sensors during a 6-day period (10-m wind speed 2–14 m s−1) was 15% ± 1%, and varied systematically with measurement height. Motion and sensor-mounting offsets caused wind stress to be underestimated by 15% at 18.1 m, 13% at 13.8 m, and 11% at 8.7 m, and to be overestimated by 3% at 3.5 m. Sensor misalignment contributed to one-third of the correction to the wind stress. The motion correction reduced some measured artifacts in the wind that could otherwise be interpreted in terms of air–sea interaction, such as the angle between wind and wind stress vectors, while other features remained in the corrected wind, such as apparent upward momentum transfer from ocean to the atmosphere during low wind. These results demonstrate the complex interaction between motion and wind turbulence, and reinforce the necessity to measure and correct for platform motion. Finally, it is shown that the effects of motion on wind stress measured using R/P FLIP are much smaller than in situ measurements made using a conventional research ship.

Full access
A. A. Grachev, C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller

Abstract

Previous investigations of the wind stress in the marine surface layer have primarily focused on determining the stress magnitude (momentum flux) and other scalar variables (e.g., friction velocity, drag coefficient, roughness length). However, the stress vector is often aligned with a direction different from that of the mean wind flow. In this paper, the focus is on the study of the stress vector direction relative to the mean wind and surface-wave directions. Results based on measurements made during three field campaigns onboard the R/P Floating Instrument Platform (FLIP) in the Pacific are discussed. In general, the wind stress is a vector sum of the 1) pure shear stress (turbulent and viscous) aligned with the mean wind shear, 2) wind-wave-induced stress aligned with the direction of the pure wind-sea waves, and 3) swell-induced stress aligned with the swell direction. The direction of the wind-wave-induced stress and the swell-induced stress components may coincide with, or be opposite to, the direction of wave propagation (pure wind waves and swell, respectively). As a result, the stress vector may deviate widely from the mean wind flow, including cases in which stress is directed across or even opposite to the wind.

Full access