Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: S. E. Perkins x
- Refine by Access: All Content x
Abstract
Daily data from climate models submitted to the Fourth Assessment of the Intergovernmental Panel on Climate Change are compared with daily data from observations over Australia by measuring the overlap of the probability density functions (PDFs). The capacity of these models to simulate maximum temperature, minimum temperature, and precipitation is assessed. The resulting skill score is then used to exclude models with relatively poor skill region by region over Australia. The remaining sample of coupled climate models is then used to determine the seasonal changes in these three variables under a high- (A2) and low- (B1) emission scenario for 2050 and 2100. The authors demonstrate that some projected phenomena, such as the projected drying over southwest Western Australia, are robust and not caused by the inclusion of some weak models in earlier assessments. Some other results, such as the projected change in the monsoon, are more consistent among the good climate models. Consistent with earlier work, a consistent pattern of mean warming is identified in the projections. The amount of warming in the 99.7th percentile is not dramatically higher than the warming in the mean. However, while the mean warming is generally least in the south, the amount of warming in the 99.7th percentile is substantially higher along the southern coast of Australia. This is due to a coupling of the temperature response with reduced rainfall, which causes drying and allows extreme maximum temperatures to increase dramatically. The authors show that, in general, the amount of rainfall is projected to change relatively little, but the frequency of rainfall decreases and the intensity of rainfall at the upper tail of the distribution increases. However, the scale of the increase in extreme rainfall is not large on the time scales analyzed here. The range in projected temperature changes among those climate models with skill in simulating the observations is at least twice as large for the 99.7th/0.3rd percentiles as for the mean. For rainfall, the range among the good models is of order 10 times greater in the 99.7th percentile than in the mean. Since the impact of changes in extremes is increasingly recognized as societally important, this result strongly limits the use of climate model data to explore sectors that are vulnerable to extremes. This suggests an evaluation strategy that focuses on model capacity to simulate whole PDFs since capacity to simulate the mean is a necessary but insufficient criterion for determining a model’s value for future projection.
Abstract
Daily data from climate models submitted to the Fourth Assessment of the Intergovernmental Panel on Climate Change are compared with daily data from observations over Australia by measuring the overlap of the probability density functions (PDFs). The capacity of these models to simulate maximum temperature, minimum temperature, and precipitation is assessed. The resulting skill score is then used to exclude models with relatively poor skill region by region over Australia. The remaining sample of coupled climate models is then used to determine the seasonal changes in these three variables under a high- (A2) and low- (B1) emission scenario for 2050 and 2100. The authors demonstrate that some projected phenomena, such as the projected drying over southwest Western Australia, are robust and not caused by the inclusion of some weak models in earlier assessments. Some other results, such as the projected change in the monsoon, are more consistent among the good climate models. Consistent with earlier work, a consistent pattern of mean warming is identified in the projections. The amount of warming in the 99.7th percentile is not dramatically higher than the warming in the mean. However, while the mean warming is generally least in the south, the amount of warming in the 99.7th percentile is substantially higher along the southern coast of Australia. This is due to a coupling of the temperature response with reduced rainfall, which causes drying and allows extreme maximum temperatures to increase dramatically. The authors show that, in general, the amount of rainfall is projected to change relatively little, but the frequency of rainfall decreases and the intensity of rainfall at the upper tail of the distribution increases. However, the scale of the increase in extreme rainfall is not large on the time scales analyzed here. The range in projected temperature changes among those climate models with skill in simulating the observations is at least twice as large for the 99.7th/0.3rd percentiles as for the mean. For rainfall, the range among the good models is of order 10 times greater in the 99.7th percentile than in the mean. Since the impact of changes in extremes is increasingly recognized as societally important, this result strongly limits the use of climate model data to explore sectors that are vulnerable to extremes. This suggests an evaluation strategy that focuses on model capacity to simulate whole PDFs since capacity to simulate the mean is a necessary but insufficient criterion for determining a model’s value for future projection.
Abstract
Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by employing a set of three heat wave definitions, derived from surveying heat-related indices in the climate science literature. The definitions include three or more consecutive days above one of the following: the 90th percentile for maximum temperature, the 90th percentile for minimum temperature, and positive extreme heat factor (EHF) conditions. Additionally, each index is studied using a multiaspect framework measuring heat wave number, duration, participating days, and the peak and mean magnitudes. Observed climatologies and trends computed by Sen's Kendall slope estimator are presented for the Australian continent for two time periods (1951–2008 and 1971–2008). Trends in all aspects and definitions are smaller in magnitude but more significant for 1951–2008 than for 1971–2008. Considerable similarities exist in trends of the yearly number of days participating in a heat wave and yearly heat wave frequency, suggesting that the number of available heat wave days drives the number of events. Larger trends in the hottest part of a heat wave suggest that heat wave intensity is increasing faster than the mean magnitude. Although the direct results of this study cannot be inferred for other regions, the methodology has been designed as such that it is widely applicable. Furthermore, it includes a range of definitions that may be useful for a wide range of systems impacted by heat waves.
Abstract
Despite their adverse impacts, definitions and measurements of heat waves are ambiguous and inconsistent, generally being endemic to only the group affected, or the respective study reporting the analysis. The present study addresses this issue by employing a set of three heat wave definitions, derived from surveying heat-related indices in the climate science literature. The definitions include three or more consecutive days above one of the following: the 90th percentile for maximum temperature, the 90th percentile for minimum temperature, and positive extreme heat factor (EHF) conditions. Additionally, each index is studied using a multiaspect framework measuring heat wave number, duration, participating days, and the peak and mean magnitudes. Observed climatologies and trends computed by Sen's Kendall slope estimator are presented for the Australian continent for two time periods (1951–2008 and 1971–2008). Trends in all aspects and definitions are smaller in magnitude but more significant for 1951–2008 than for 1971–2008. Considerable similarities exist in trends of the yearly number of days participating in a heat wave and yearly heat wave frequency, suggesting that the number of available heat wave days drives the number of events. Larger trends in the hottest part of a heat wave suggest that heat wave intensity is increasing faster than the mean magnitude. Although the direct results of this study cannot be inferred for other regions, the methodology has been designed as such that it is widely applicable. Furthermore, it includes a range of definitions that may be useful for a wide range of systems impacted by heat waves.
Abstract
A comparison of three global reanalyses is conducted based on probability density functions of daily maximum and minimum temperature at 2-m and 1000-hPa levels. The three reanalyses compare very favorably in both maximum and minimum temperatures at 1000 hPa, in both the mean and the 99.7th and 0.3rd percentiles of both quantities in most regions. At 2 m, there are large and widespread differences in the mean and 99.7th percentiles in maximum temperature between the three reanalyses over land commonly exceeding ±5°C and regionally exceeding ±10°C. The 2-m minimum temperatures compare unfavorably between the three reanalyses over virtually all continental surfaces with differences exceeding ±10°C over widespread areas. It is concluded that the three reanalyses are generally interchangeable in 1000-hPa temperatures. The three reanalyses of 2-m temperatures are very different owing to the methods used to diagnose these quantities. At this time, the probability distribution functions of the 2-m temperatures from the three reanalyses are sufficiently different that either the 2-m air temperatures should not be used or all three products should be used independently in any application and the differences highlighted.
Abstract
A comparison of three global reanalyses is conducted based on probability density functions of daily maximum and minimum temperature at 2-m and 1000-hPa levels. The three reanalyses compare very favorably in both maximum and minimum temperatures at 1000 hPa, in both the mean and the 99.7th and 0.3rd percentiles of both quantities in most regions. At 2 m, there are large and widespread differences in the mean and 99.7th percentiles in maximum temperature between the three reanalyses over land commonly exceeding ±5°C and regionally exceeding ±10°C. The 2-m minimum temperatures compare unfavorably between the three reanalyses over virtually all continental surfaces with differences exceeding ±10°C over widespread areas. It is concluded that the three reanalyses are generally interchangeable in 1000-hPa temperatures. The three reanalyses of 2-m temperatures are very different owing to the methods used to diagnose these quantities. At this time, the probability distribution functions of the 2-m temperatures from the three reanalyses are sufficiently different that either the 2-m air temperatures should not be used or all three products should be used independently in any application and the differences highlighted.
Abstract
The coupled climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change are evaluated. The evaluation is focused on 12 regions of Australia for the daily simulation of precipitation, minimum temperature, and maximum temperature. The evaluation is based on probability density functions and a simple quantitative measure of how well each climate model can capture the observed probability density functions for each variable and each region is introduced. Across all three variables, the coupled climate models perform better than expected. Precipitation is simulated reasonably by most and very well by a small number of models, although the problem with excessive drizzle is apparent in most models. Averaged over Australia, 3 of the 14 climate models capture more than 80% of the observed probability density functions for precipitation. Minimum temperature is simulated well, with 10 of the 13 climate models capturing more than 80% of the observed probability density functions. Maximum temperature is also reasonably simulated with 6 of 10 climate models capturing more than 80% of the observed probability density functions. An overall ranking of the climate models, for each of precipitation, maximum, and minimum temperatures, and averaged over these three variables, is presented. Those climate models that are skillful over Australia are identified, providing guidance on those climate models that should be used in impacts assessments where those impacts are based on precipitation or temperature. These results have no bearing on how well these models work elsewhere, but the methodology is potentially useful in assessing which of the many climate models should be used by impacts groups.
Abstract
The coupled climate models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change are evaluated. The evaluation is focused on 12 regions of Australia for the daily simulation of precipitation, minimum temperature, and maximum temperature. The evaluation is based on probability density functions and a simple quantitative measure of how well each climate model can capture the observed probability density functions for each variable and each region is introduced. Across all three variables, the coupled climate models perform better than expected. Precipitation is simulated reasonably by most and very well by a small number of models, although the problem with excessive drizzle is apparent in most models. Averaged over Australia, 3 of the 14 climate models capture more than 80% of the observed probability density functions for precipitation. Minimum temperature is simulated well, with 10 of the 13 climate models capturing more than 80% of the observed probability density functions. Maximum temperature is also reasonably simulated with 6 of 10 climate models capturing more than 80% of the observed probability density functions. An overall ranking of the climate models, for each of precipitation, maximum, and minimum temperatures, and averaged over these three variables, is presented. Those climate models that are skillful over Australia are identified, providing guidance on those climate models that should be used in impacts assessments where those impacts are based on precipitation or temperature. These results have no bearing on how well these models work elsewhere, but the methodology is potentially useful in assessing which of the many climate models should be used by impacts groups.