Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: S. F. Corfidi x
- Monthly Weather Review x
- Refine by Access: All Content x
Abstract
This work presents an analysis of the vertical wind shear during the early stages of the remarkable 8 May 2009 central U.S. derecho-producing convective system. Comments on applying Rotunno–Klemp–Weisman (RKW) theory to mesoscale convective systems (MCSs) of this type also are provided. During the formative stages of the MCS, the near-surface-based shear vectors ahead of the leading convective line varied with time, location, and depth, but the line-normal component of the shear in any layer below 3 km ahead of where the strong bow echo developed was relatively small (6–9 m s−1). Concurrently, the midlevel (3–6 km) line-normal shear component had magnitudes mostly >10 m s−1 throughout.
In a previous companion paper, it was hypothesized that an unusually strong and expansive low-level jet led to dramatic changes in instability, shear, and forced ascent over mesoscale areas. These mesoscale effects may have overwhelmed the interactions between the cold pool and low-level shear that modulate system structure in less complex environments. If cold pool–shear interactions were critical to producing such a strong system, then the extension of the line-normal shear above 3 km also appeared to be critical. It is suggested that RKW theory be applied with much caution, and that examining the shear above 3 km is important, if one wishes to explain the formation and maintenance of intense long-lived convective systems, particularly complex nocturnal systems like the one that occurred on 8 May 2009.
Abstract
This work presents an analysis of the vertical wind shear during the early stages of the remarkable 8 May 2009 central U.S. derecho-producing convective system. Comments on applying Rotunno–Klemp–Weisman (RKW) theory to mesoscale convective systems (MCSs) of this type also are provided. During the formative stages of the MCS, the near-surface-based shear vectors ahead of the leading convective line varied with time, location, and depth, but the line-normal component of the shear in any layer below 3 km ahead of where the strong bow echo developed was relatively small (6–9 m s−1). Concurrently, the midlevel (3–6 km) line-normal shear component had magnitudes mostly >10 m s−1 throughout.
In a previous companion paper, it was hypothesized that an unusually strong and expansive low-level jet led to dramatic changes in instability, shear, and forced ascent over mesoscale areas. These mesoscale effects may have overwhelmed the interactions between the cold pool and low-level shear that modulate system structure in less complex environments. If cold pool–shear interactions were critical to producing such a strong system, then the extension of the line-normal shear above 3 km also appeared to be critical. It is suggested that RKW theory be applied with much caution, and that examining the shear above 3 km is important, if one wishes to explain the formation and maintenance of intense long-lived convective systems, particularly complex nocturnal systems like the one that occurred on 8 May 2009.
Abstract
This study documents the complex environment and early evolution of the remarkable derecho that traversed portions of the central United States on 8 May 2009. Central to this study is the comparison of the 8 May 2009 derecho environment to that of other mesoscale convective systems (MCSs) that occurred in the central United States during a similar time of year. Synoptic-scale forcing was weak and thermodynamic instability was limited during the development of the initial convection, but several mesoscale features of the environment appeared to contribute to initiation and upscale growth, including a mountain wave, a midlevel jet streak, a weak midlevel vorticity maximum, a ““Denver cyclone,”” and a region of upper-tropospheric inertial instability.
The subsequent MCS developed in an environment with an unusually strong and deep low-level jet (LLJ), which transported exceptionally high amounts of low-level moisture northward very rapidly, destabilized the lower troposphere, and enhanced frontogenetical circulations that appeared to aid convective development. The thermodynamic environment ahead of the developing MCS contained unusually high precipitable water (PW) and very large midtropospheric lapse rates, compared to other central plains MCSs. Values of downdraft convective available potential energy (DCAPE), mean winds, and 0––6-km vertical wind shear were not as anomalously large as the PW, lapse rates, and LLJ. In fact, the DCAPE values were lower than the mean values in the comparison dataset. These results suggest that the factors contributing to updraft strength over a relatively confined area played a significant role in generating the strong outflow winds at the surface, by providing a large volume of hydrometeors to drive the downdrafts.
Abstract
This study documents the complex environment and early evolution of the remarkable derecho that traversed portions of the central United States on 8 May 2009. Central to this study is the comparison of the 8 May 2009 derecho environment to that of other mesoscale convective systems (MCSs) that occurred in the central United States during a similar time of year. Synoptic-scale forcing was weak and thermodynamic instability was limited during the development of the initial convection, but several mesoscale features of the environment appeared to contribute to initiation and upscale growth, including a mountain wave, a midlevel jet streak, a weak midlevel vorticity maximum, a ““Denver cyclone,”” and a region of upper-tropospheric inertial instability.
The subsequent MCS developed in an environment with an unusually strong and deep low-level jet (LLJ), which transported exceptionally high amounts of low-level moisture northward very rapidly, destabilized the lower troposphere, and enhanced frontogenetical circulations that appeared to aid convective development. The thermodynamic environment ahead of the developing MCS contained unusually high precipitable water (PW) and very large midtropospheric lapse rates, compared to other central plains MCSs. Values of downdraft convective available potential energy (DCAPE), mean winds, and 0––6-km vertical wind shear were not as anomalously large as the PW, lapse rates, and LLJ. In fact, the DCAPE values were lower than the mean values in the comparison dataset. These results suggest that the factors contributing to updraft strength over a relatively confined area played a significant role in generating the strong outflow winds at the surface, by providing a large volume of hydrometeors to drive the downdrafts.