Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: S. P. Ballard x
  • Refine by Access: All Content x
Clear All Modify Search
K. A. Browning
,
S. P. Ballard
, and
C. S. A. Davitt

Abstract

A mesoscale array of dropwindsondes, released in a small rapidly deepening frontal wave cyclone in the eastern North Atlantic during the FRONTS 92 experiment, has been assimilated into a 17-km-grid mesoscale model nested within the Meteorological Office’s operational Limited Area Model. The mesoscale model reproduced the evolving cloud pattern, with “cloud head” and “dry slot,” seen in satellite imagery. It also revealed a well-defined evolution in the three-dimensional thermodynamic structure associated with the process known as frontal fracture.

The frontal fracture was revealed most clearly in the pattern of wet-bulb potential temperature θ w , which was distorted by an effective differential rotation, the rotation increasing with height. This led to backward-tilted θ w surfaces (and ana-cold-frontal characteristics) in the cloud head to the north of the center of rotation, and to forward-tilted θ w surfaces (and kata-cold-frontal characteristics) in the dry slot to the south of the center of rotation. The effective differential rotation was associated with a local maximum of potential vorticity aloft within a developing tropopause fold.

Full access
S. P. Ballard
,
B. W. Golding
, and
R. N. B. Smith

Abstract

A mesoscale model is used to simulate the diurnal evolution of sea fog off the northeast Scottish coast observed on 27 April 1984. It is shown that the accuracy of the early part of the forecast is very dependent on the specification of the initial conditions. If the initial description of the fog is sufficiently good the model can accurately erode it during the day and reform it in the following evening. The dependence of the accuracy of the forecasts on vertical resolution is also discussed.

Full access
S. J. Rennie
,
S. L. Dance
,
A. J. Illingworth
,
S. P. Ballard
, and
D. Simonin

Abstract

The assimilation of Doppler radar radial winds for high-resolution NWP may improve short-term forecasts of convective weather. Using insects as the radar target, it is possible to provide wind observations during convective development. This study aims to explore the potential of these new observations, with three case studies. Radial winds from insects detected by four operational weather radars were assimilated using three-dimensional variational data assimilation (3D-Var) into a 1.5-km resolution version of the Met Office Unified Model, using a southern U.K. domain and no convective parameterization. The effect on the analyzed wind was small, with changes in direction and speed up to 45° and 2 m s−1, respectively. The forecast precipitation was perturbed in space and time but not substantially modified. Radial wind observations from insects show the potential to provide small corrections to the location and timing of showers, but not to completely relocate convergence lines. Overall, quantitative analysis indicated the observation impact in the three case studies was small and neutral. However, the small sample size and possible ground clutter contamination issues preclude unequivocal impact estimation. The study shows the potential positive impact of insect winds; future operational systems using dual-polarization radars that are better able to discriminate between insects and clutter returns should provide a much greater impact on forecasts.

Full access
J. A. Waller
,
D. Simonin
,
S. L. Dance
,
N. K. Nichols
, and
S. P. Ballard

Abstract

With the development of convection-permitting numerical weather prediction the efficient use of high-resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Doppler radar radial winds (DRWs), is now common, although to avoid violating the assumption of uncorrelated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast requires the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the DRWs that are assimilated into the Met Office high-resolution U.K. model (UKV) using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam observation error statistics. The new results obtained show that the DRW error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly, the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent both on the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the background error covariance matrix used in the assimilation, although they are, in part, a result of using superobservations and a simplified observation operator. The inclusion of correlated error statistics in the assimilation allows less thinning of the data and hence better use of the high-resolution observations.

Full access
B. W. Golding
,
S. P. Ballard
,
K. Mylne
,
N. Roberts
,
A. Saulter
,
C. Wilson
,
P. Agnew
,
L. S. Davis
,
J. Trice
,
C. Jones
,
D. Simonin
,
Z. Li
,
C. Pierce
,
A. Bennett
,
M. Weeks
, and
S. Moseley

The provision of weather forecasts for the London Olympic and Paralympic Games in 2012 offered the opportunity for the Met Office to accelerate the transition to operations of several advanced numerical modeling capabilities and to demonstrate their performance to external scientists. It was also an event that captured public interest, providing an opportunity to educate and build trust in the weather forecasting enterprise in the United Kingdom and beyond. The baseline NWP guidance for the duration of the Olympic Games came from three main configurations of the Met Office Unified Model: global 25-km deterministic, North Atlantic/Europe 18-km ensemble, and U.K. 1.5-km deterministic. The advanced capabilities demonstrated during the Olympic Games consisted of a rapid-update hourly cycle of a 1.5-km grid length configuration for the southern United Kingdom using four-dimensional variational data assimilation (4D-Var) and enhanced observations; a 2.2-km grid length U.K. ensemble; a 333-m grid length configuration of the Unified Model and 250-m configuration of the Simulating Waves Nearshore (SWAN) ocean wave model for Weymouth Bay; and a 12-km grid length configuration of Air Quality in the Unified Model with prognostic aerosols and chemistry. Despite their different levels of maturity, each of the new capabilities provided useful additional guidance to Met Office weather advisors, contributing to an outstanding service to the Olympic Games organizers and the public. The website provided layered access to information about the science and to selected real-time products, substantially raising the profile of Met Office weather forecasting research among the United Kingdom and overseas public.

Full access
G. Vaughan
,
J. Methven
,
D. Anderson
,
B. Antonescu
,
L. Baker
,
T. P. Baker
,
S. P. Ballard
,
K. N. Bower
,
P. R. A. Brown
,
J. Chagnon
,
T. W. Choularton
,
J. Chylik
,
P. J. Connolly
,
P. A. Cook
,
R. J. Cotton
,
J. Crosier
,
C. Dearden
,
J. R. Dorsey
,
T. H. A. Frame
,
M. W. Gallagher
,
M. Goodliff
,
S. L. Gray
,
B. J. Harvey
,
P. Knippertz
,
H. W. Lean
,
D. Li
,
G. Lloyd
,
O. Martínez–Alvarado
,
J. Nicol
,
J. Norris
,
E. Öström
,
J. Owen
,
D. J. Parker
,
R. S. Plant
,
I. A. Renfrew
,
N. M. Roberts
,
P. Rosenberg
,
A. C. Rudd
,
D. M. Schultz
,
J. P. Taylor
,
T. Trzeciak
,
R. Tubbs
,
A. K. Vance
,
P. J. van Leeuwen
,
A. Wellpott
, and
A. Woolley

Abstract

The Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Friedhelm on 8 December 2011, when surface winds with gusts exceeding 30 m s–1 crossed central Scotland, leading to widespread disruption to transportation and electricity supply. Friedhelm deepened 44 hPa in 24 h and developed a pronounced bent-back front wrapping around the storm center. The strongest winds at 850 hPa and the surface occurred in the southern quadrant of the storm, and detailed measurements showed these to be most intense in clear air between bands of showers. High-resolution ensemble forecasts from the Met Office showed similar features, with the strongest winds aligned in linear swaths between the bands, suggesting that there is potential for improved skill in forecasts of damaging winds.

Open access