Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: S. Pawson x
  • Refine by Access: All Content x
Clear All Modify Search
Jonathan S. Kinnersley and Steven Pawson

Abstract

The influence of vertical advection on the descent rate of the zero-wind line in both phases of the equatorial quasi-biennial oscillation (QBO) is investigated with the help of the “THIN AIR” stratosphere two-and-a-half-dimensional model. The model QBO is forced by two symmetric easterly and westerly waves, and yet the model reproduces qualitatively the observed asymmetry in the descent rates of the two shear zones due to the enhanced heating during easterly descent combined with the equatorial heating induced by the extratropical planetary waves. Observations show that the maximum easterly accelerations occur predominantly from May until July, which is when the modeled equatorial planetary-wave-induced heating rates are weakest. Hence, model results are consistent with the theory that vertical advection induced by extratropical planetary waves slows significantly the descent of the easterly shear zone. The model also shows the observed increase in vertical wind shear during stalling of the easterly descent (which increases the impact of vertical advection). In the model, the effect of cross-equatorial advection of momentum by the mean flow is negligible compared to the vertical advection. Changes in the propagation of planetary waves depending on the sign of the equatorial zonal wind have a small effect on the modeled equatorial heating rates and therefore do not play a large part in producing the modeled asymmetry in descent rates.

Full access
S. Pawson, R. S. Hardwood, and J. D. Haigh

Abstract

Radiative dissipation coefficients for the observed, large-scale temperature waves in the middle atmosphere are presented and discussed. These have been calculated using LIMS measurements of the temperature, ozone, and water vapor distributions in a broadband radiative heating model. The total dissipation rate is determined by contributions due to thermal emission by the three gases considered and the absorption of solar radiation by ozone, which is important in the high stratosphere. The relative contribution of each gas to the total dissipation coefficient is discussed; this scales approximately with the contribution to the radiative balance of the atmosphere. In the winter hemisphere, the results are comparable with linearized estimates of the radiative dissipation coefficient, consistent with the deep vertical structure of the waves. Tropical dissipation rates are markedly different; in the middle and high stratosphere the analytical results of Fels are confirmed for the observed waves. Some evidence is tentatively presented for wave amplification by radiative processes in the low stratosphere, arising from absorption by the 9.6-μm bands of ozone.

Full access
Richard S. Stolarski, Anne R. Douglass, Stephen Steenrod, and Steven Pawson

Abstract

Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and time-dependent mixing ratio boundary conditions for CFCs, halons, and other source gases such as N2O and CH4. A second CTM simulation was carried out for identical solar flux and boundary conditions but with constant “background” aerosol conditions. The GCM integration included an online ozonelike tracer with specified production and loss that was used to evaluate the effects of interannual variability in dynamics. Statistical time series analysis was applied to both observed and simulated ozone to examine the capability of the analyses for the determination of trends in ozone due to CFCs and to separate these trends from the solar cycle and volcanic effects in the atmosphere. The results point out several difficulties associated with the interpretation of time series analyses of atmospheric ozone data. In particular, it is shown that lengthening the dataset reduces the uncertainty in derived trend due to interannual dynamic variability. It is further shown that interannual variability can make it difficult to accurately assess the impact of a volcanic eruption, such as Pinatubo, on ozone. Such uncertainties make it difficult to obtain an early proof of ozone recovery in response to decreasing chlorine.

Full access
Richard S. Stolarski, Anne R. Douglass, Paul A. Newman, Steven Pawson, and Mark R. Schoeberl

Abstract

The temperature of the stratosphere has decreased over the past several decades. Two causes contribute to that decrease: well-mixed greenhouse gases (GHGs) and ozone-depleting substances (ODSs). This paper addresses the attribution of temperature decreases to these two causes and the implications of that attribution for the future evolution of stratospheric temperature. Time series analysis is applied to simulations of the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM) to separate the contributions of GHGs from those of ODSs based on their different time-dependent signatures. The analysis indicates that about 60%–70% of the temperature decrease of the past two decades in the upper stratosphere near 1 hPa and in the lower midlatitude stratosphere near 50 hPa resulted from changes attributable to ODSs, primarily through their impact on ozone. As ozone recovers over the next several decades, the temperature should continue to decrease in the middle and upper stratosphere because of GHG increases. The time series of observed temperature in the upper stratosphere is approaching the length needed to separate the effects of ozone-depleting substances from those of greenhouse gases using temperature time series data.

Full access
Luke Oman, Darryn W. Waugh, Steven Pawson, Richard S. Stolarski, and J. Eric Nielsen

Abstract

Past and future climate simulations from the Goddard Earth Observing System Chemistry–Climate Model (GEOS CCM), with specified boundary conditions for sea surface temperature, sea ice, and trace gas emissions, have been analyzed to assess trends and possible causes of changes in stratospheric water vapor. The simulated distribution of stratospheric water vapor in the 1990s compares well with observations. Changes in the cold point temperatures near the tropical tropopause can explain differences in entry stratospheric water vapor. The average saturation mixing ratio of a 20° latitude by 15° longitude region surrounding the minimum tropical saturation mixing ratio is shown to be a useful diagnostic for entry stratospheric water vapor and does an excellent job reconstructing the annual average entry stratospheric water vapor over the period 1950–2100. The simulated stratospheric water vapor increases over the 50 yr between 1950 and 2000, primarily because of changes in methane concentrations, offset by a slight decrease in tropical cold point temperatures. Stratospheric water vapor is predicted to continue to increase over the twenty-first century, with increasing methane concentrations causing the majority of the trend to midcentury. Small increases in cold point temperature cause increases in the entry water vapor throughout the twenty-first century. The increasing trend in future water vapor is tempered by a decreasing contribution of methane oxidation owing to cooling stratospheric temperatures and by increased tropical upwelling, leading to a near-zero trend for the last 30 yr of the twenty-first century.

Full access
L. Coy, I. Štajner, A. M. DaSilva, J. Joiner, R. B. Rood, S. Pawson, and S. J. Lin

Abstract

The 4-day wave often dominates the large-scale wind, temperature, and constituent variability in the high-latitude Southern Hemisphere winter near the stratopause. This study examines the winter Southern Hemisphere vortex of 1998 using 4-times-daily output from a data assimilation system to focus on the polar 2-day, wavenumber-2 component of the 4-day wave. The data assimilation system products are from a test version of the finite volume data assimilation system (fvDAS) being developed at the Goddard Space Flight Center (GSFC) and include an ozone assimilation system. Results show that the polar 2-day wave in temperature and ozone dominates over other planetary-scale disturbances during July 1998 at 70°S. The period of the quasi-2-day wave is somewhat shorter than 2 days (about 1.7 days) during July 1998 with an average perturbation temperature amplitude for the month of over 2.5 K. The 2-day wave propagates more slowly than the zonal mean zonal wind, consistent with Rossby wave theory, and has Eliassen–Palm (EP) flux divergence regions associated with regions of negative horizontal potential vorticity gradients, as expected from linear instability theory. Results for the assimilation-produced ozone mixing ratio show that the 2-day wave represents a major source of ozone variation in this region. The ozone wave in the assimilation system is in good agreement with the wave seen in the Polar Ozone and Aerosol Measurement (POAM) ozone observations for the same time period. Some differences from linear instability theory are noted, as well as spectral peaks in the ozone field, not seen in the temperature field, that may be a consequence of advection.

Full access
T. Horinouchi, S. Pawson, K. Shibata, U. Langematz, E. Manzini, M. A. Giorgetta, F. Sassi, R. J. Wilson, K. Hamilton, J. de Grandpré, and A. A. Scaife

Abstract

It is recognized that the resolved tropical wave spectrum can vary considerably among general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of low-latitude waves is presented for the December–January–February period using high-frequency data from nine GCMs participating in the GCM Reality Intercomparison Project for Stratospheric Processes and Their Role in Climate (GRIPS; SPARC). Quantitative measures of the wavenumber-frequency structure of resolved waves and their impacts on the zonal mean circulation are given. Space–time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to the variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude among the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different cumulus parameterizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is the most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the observational estimates. Among the models, only those that produce the largest precipitation variability can reproduce the equatorial quasi-biennial oscillation (QBO). This implies that in the real atmosphere, the forcing from the waves, which are resolvable with the typical resolutions of present-day GCMs, is insufficient to drive the QBO. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is comparable to or larger than that by planetary-scale Kelvin waves, being more significant than has been thought. It is shown that the westerly accelerations in the equatorial semi-annual oscillation in the models examined are driven mainly by gravity waves with periods shorter than 3 days, with some contribution from parameterized gravity waves, and that the contribution from the wavenumber-1 Kelvin waves is negligible. These results provide a state-of-the-art assessment of the links between convective parameterizations and middle-atmospheric waves in present-day middle-atmosphere climate models.

Full access
L. E. Ott, J. Bacmeister, S. Pawson, K. Pickering, G. Stenchikov, M. Suarez, H. Huntrieser, M. Loewenstein, J. Lopez, and I. Xueref-Remy

Abstract

Convection strongly influences the distribution of atmospheric trace gases. General circulation models (GCMs) use convective mass fluxes calculated by parameterizations to transport gases, but the results are difficult to compare with trace gas observations because of differences in scale. The high resolution of cloud-resolving models (CRMs) facilitates direct comparison with aircraft observations. Averaged over a sufficient area, CRM results yield a validated product directly comparable to output from a single global model grid column. This study presents comparisons of vertical profiles of convective mass flux and trace gas mixing ratios derived from CRM and single column model (SCM) simulations of storms observed during three field campaigns. In all three cases, SCM simulations underpredicted convective mass flux relative to CRM simulations. As a result, the SCM simulations produced lower trace gas mixing ratios in the upper troposphere in two of the three storms than did the CRM simulations.

The impact of parameter sensitivity in the moist physics schemes employed in the SCM has also been examined. Statistical techniques identified the most significant parameters influencing convective transport. Convective mass fluxes are shown to be strongly dependent on chosen parameter values. Results show that altered parameter settings can substantially improve the comparison between SCM and CRM convective mass flux. Upper tropospheric trace gas mixing ratios were also improved in two storms. In the remaining storm, the SCM representation of CO2 was not improved because of differences in entrainment and detrainment levels in the CRM and SCM simulations.

Full access
Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, E. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, C. McLandress, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, and W. Tian

Abstract

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Full access
V. Eyring, N. R. P. Harris, M. Rex, T. G. Shepherd, D. W. Fahey, G. T. Amanatidis, J. Austin, M. P. Chipperfield, M. Dameris, P. M. De F. Forster, A. Gettelman, H. F. Graf, T. Nagashima, P. A. Newman, S. Pawson, M. J. Prather, J. A. Pyle, R. J. Salawitch, B. D. Santer, and D. W. Waugh

Accurate and reliable predictions and an understanding of future changes in the stratosphere are major aspects of the subject of climate change. Simulating the interaction between chemistry and climate is of particular importance, because continued increases in greenhouse gases and a slow decrease in halogen loading are expected. These both influence the abundance of stratospheric ozone. In recent years a number of coupled chemistry–climate models (CCMs) with different levels of complexity have been developed. They produce a wide range of results concerning the timing and extent of ozone-layer recovery. Interest in reducing this range has created a need to address how the main dynamical, chemical, and physical processes that determine the long-term behavior of ozone are represented in the models and to validate these model processes through comparisons with observations and other models. A set of core validation processes structured around four major topics (transport, dynamics, radiation, and stratospheric chemistry and microphysics) has been developed. Each process is associated with one or more model diagnostics and with relevant datasets that can be used for validation. This approach provides a coherent framework for validating CCMs and can be used as a basis for future assessments. Similar efforts may benefit other modeling communities with a focus on earth science research as their models increase in complexity.

Full access