Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Serrar x
  • Refine by Access: All Content x
Clear All Modify Search
T. Jung
,
T. N. Palmer
,
M. J. Rodwell
, and
S. Serrar

Abstract

Experiments with the atmospheric component of the ECMWF Integrated Forecasting System (IFS) have been carried out to study the origin of the atmospheric circulation anomalies that led to the unusually cold European winter of 2005/06. Experiments with prescribed sea surface temperature (SST) and sea ice fields fail to reproduce the observed atmospheric circulation anomalies suggesting that the role of SST and sea ice was either not very important or the atmospheric response to SST and sea ice was not very well captured by the ECMWF model. Additional experiments are carried out in which certain regions of the atmosphere are relaxed toward analysis data thereby artificially suppressing the development of forecast error. The relaxation experiments suggest that both tropospheric circulation anomalies in the Euro–Atlantic region and the anomalously weak stratospheric polar vortex can be explained by tropical circulation anomalies. Separate relaxation experiments for the tropical stratosphere and tropical troposphere highlight the role of the easterly phase of quasi-biennial oscillation (QBO) and, most importantly, tropospheric circulation anomalies, especially over South America and the tropical Atlantic. From the results presented in this study, it is argued that the relaxation technique is a powerful diagnostic tool to understand possible remote origins of seasonal-mean anomalies.

Full access
C. J. Stubenrauch
,
A. Chédin
,
G. Rädel
,
N. A. Scott
, and
S. Serrar

Abstract

Eight years of cloud properties retrieved from Television Infrared Observation Satellite-N (TIROS-N) Observational Vertical Sounder (TOVS) observations aboard the NOAA polar orbiting satellites are presented. The relatively high spectral resolution of these instruments in the infrared allows especially reliable cirrus identification day and night. This dataset therefore provides complementary information to the International Satellite Cloud Climatology Project (ISCCP). According to this dataset, cirrus clouds cover about 27% of the earth and 45% of the Tropics, whereas ISCCP reports 19% and 25%, respectively. Both global datasets agree within 5% on the amount of single-layer low clouds, at 30%. From 1987 to 1995, global cloud amounts remained stable to within 2%. The seasonal cycle of cloud amount is in general stronger than its diurnal cycle and it is stronger than the one of effective cloud amount, the latter the relevant variable for radiative transfer. Maximum effective low cloud amount over ocean occurs in winter in SH subtropics in the early morning hours and in NH midlatitudes without diurnal cycle. Over land in winter the maximum is in the early afternoon, accompanied in the midlatitudes by thin cirrus. Over tropical land and in the other regions in summer, the maximum of mesoscale high opaque clouds occurs in the evening. Cirrus also increases during the afternoon and persists during night and early morning. The maximum of thin cirrus is in the early afternoon, then decreases slowly while cirrus and high opaque clouds increase. TOVS extends information of ISCCP during night, indicating that high cloudiness, increasing during the afternoon, persists longer during night in the Tropics and subtropics than in midlatitudes. A comparison of seasonal and diurnal cycle of high cloud amount between South America, Africa, and Indonesia during boreal winter has shown strong similarities between the two land regions, whereas the Indonesian islands show a seasonal and diurnal behavior strongly influenced by the surrounding ocean. Deeper precipitation systems over Africa than over South America do not seem to be directly reflected in the horizontal coverage and mesoscale effective emissivity of high clouds.

Full access