Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: S. Ueno x
  • Refine by Access: All Content x
Clear All Modify Search
T. P. Y. Poon and S. Ueno

Abstract

In a series of papers given by Redheffer, Peebles and Plesset, Wang, Aronson and Yarmush, Grant and Hunt, the scattering matrix method has been applied to the solution of the linearized Boltzmann equation. On the other hand, the doubling equations for the scattering and transmission functions in a homogeneous anisotropically scattered atmosphere have been found by van de Hulst and successfully extended by Hansen and Hansen and by Hovenier with the aid of the invariance principles. In the present paper we show how to derive the doubling equations for the scattering and transmission functions in a homogeneous anisotropically scattering atmosphere by using the scattering matrix.

Full access
Tandong Yao, Yongkang Xue, Deliang Chen, Fahu Chen, Lonnie Thompson, Peng Cui, Toshio Koike, William K.-M. Lau, Dennis Lettenmaier, Volker Mosbrugger, Renhe Zhang, Baiqing Xu, Jeff Dozier, Thomas Gillespie, Yu Gu, Shichang Kang, Shilong Piao, Shiori Sugimoto, Kenichi Ueno, Lei Wang, Weicai Wang, Fan Zhang, Yongwei Sheng, Weidong Guo, Ailikun, Xiaoxin Yang, Yaoming Ma, Samuel S. P. Shen, Zhongbo Su, Fei Chen, Shunlin Liang, Yimin Liu, Vijay P. Singh, Kun Yang, Daqing Yang, Xinquan Zhao, Yun Qian, Yu Zhang, and Qian Li

Abstract

The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years. This paper reviews the latest development in multidisciplinary TP research associated with this warming. The rapid warming facilitates intense and broad glacier melt over most of the TP, although some glaciers in the northwest are advancing. By heating the atmosphere and reducing snow/ice albedo, aerosols also contribute to the glaciers melting. Glacier melt is accompanied by lake expansion and intensification of the water cycle over the TP. Precipitation has increased over the eastern and northwestern TP. Meanwhile, the TP is greening and most regions are experiencing advancing phenological trends, although over the southwest there is a spring phenological delay mainly in response to the recent decline in spring precipitation. Atmospheric and terrestrial thermal and dynamical processes over the TP affect the Asian monsoon at different scales. Recent evidence indicates substantial roles that mesoscale convective systems play in the TP’s precipitation as well as an association between soil moisture anomalies in the TP and the Indian monsoon. Moreover, an increase in geohazard events has been associated with recent environmental changes, some of which have had catastrophic consequences caused by glacial lake outbursts and landslides. Active debris flows are growing in both frequency of occurrences and spatial scale. Meanwhile, new types of disasters, such as the twin ice avalanches in Ali in 2016, are now appearing in the region. Adaptation and mitigation measures should be taken to help societies’ preparation for future environmental challenges. Some key issues for future TP studies are also discussed.

Open access