Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: S. Webster x
  • All content x
Clear All Modify Search
Gregory S. Duane, Peter J. Webster, and Jeffrey B. Weiss

Abstract

Teleconnections between the midlatitudes of the Northern and Southern Hemispheres are diagnosed in National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data and separately in European Centre for Medium-Range Weather Forecasts reanalysis data. The teleconnections are manifested as a small but significant tendency for blocking to occur simultaneously in the two hemispheres, though at different longitudes and different relative latitudes, during boreal winters over the period 1979–94 in both datasets.

One way to explain the correlations between blocking events is as an instance of synchronized chaos, the tendency of some coupled chaotic systems to synchronize, permanently or intermittently, regardless of initial conditions. As the coupling is weakened, the systems no longer synchronize completely, but small correlations between the states of the coupled systems are observed instead. In previous work, such behavior was observed in an idealized coupled-hemisphere model constructed from a midlatitude model due to de Swart, which extended the earlier Charney–DeVore spectral truncation of the barotropic vorticity equation by including a few extra modes. The direct coupling of the two midlatitude systems in the coupled-hemisphere model represented the exchange of Rossby waves through the upper-tropospheric “westerly ducts” in the Tropics.

Significant correlations are found between blocking events, which are chaotically timed in each hemisphere considered singly, even without several of the idealizations used in the previous study. In a model modified to include an extended tropical region, the correlations are little affected by attenuation and phase shift of the Rossby waves that couple the two midlatitude systems. Variations in the relative longitudes of topographic features in the two hemispheres leave significant correlations or anticorrelations. The annual cycle, which imposes directionality on the coupling, since the Northern Hemisphere is more strongly forced than the Southern Hemisphere at the times when the hemispheres are coupled, increases the correlations slightly. A two-hemisphere model constructed from a higher-order (wavenumber 3) truncation of the barotropic vorticity equation exhibits regime transitions between blocked and zonal flow at a more realistic rate in each hemisphere but still exhibits interhemispheric correlations.

Full access
C. E. Birch, S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim

Abstract

State-of-the-art regional climate model simulations that are able to resolve key mesoscale circulations are used, for the first time, to understand the interaction between the large-scale convective environment of the MJO and processes governing the strong diurnal cycle over the islands of the Maritime Continent (MC). Convection is sustained in the late afternoon just inland of the coasts because of sea breeze convergence. Previous work has shown that the variability in MC rainfall associated with the MJO is manifested in changes to this diurnal cycle; land-based rainfall peaks before the active convective envelope of the MJO reaches the MC, whereas oceanic rainfall rates peak while the active envelope resides over the region. The model simulations show that the main controls on oceanic MC rainfall in the early active MJO phases are the large-scale environment and atmospheric stability, followed by high oceanic latent heat flux forced by high near-surface winds in the later active MJO phases. Over land, rainfall peaks before the main convective envelope arrives (in agreement with observations), even though the large-scale convective environment is only moderately favorable for convection. The causes of this early rainfall peak are strong convective triggers from land–sea breeze circulations that result from high surface insolation and surface heating. During the peak MJO phases cloud cover increases and surface insolation decreases, which weakens the strength of the mesoscale circulations and reduces land-based rainfall, even though the large-scale environment remains favorable for convection at this time. Hence, scale interactions are an essential part of the MJO transition across the MC.

Full access
T. H. M. Stein, W. Keat, R. I. Maidment, S. Landman, E. Becker, D. F. A. Boyd, A. Bodas-Salcedo, G. Pankiewicz, and S. Webster

Abstract

Since 2016, the South African Weather Service (SAWS) has been running convective-scale simulations to assist with forecast operations across southern Africa. These simulations are run with a tropical configuration of the Met Office Unified Model (UM), nested in the Met Office global model, but without data assimilation. For November 2016, convection-permitting simulations at 4.4- and 1.5-km grid lengths are compared against a simulation at 10-km grid length with convection parameterization (the current UM global atmosphere configuration) to identify the benefits of increasing model resolution for forecasting convection across southern Africa. The simulations are evaluated against satellite rainfall estimates, CloudSat vertical cloud profiles, and SAWS radar data. In line with previous studies using the UM, on a monthly time scale, the diurnal cycle of convection and the distribution of rainfall rates compare better against observations when convection-permitting model configurations are used. The SAWS radar network provides a three-dimensional composite of radar reflectivity for northeast South Africa at 6-min intervals, allowing the evaluation of the vertical development of precipitating clouds and of the timing of the onset of deep convection. Analysis of four case study days indicates that the 4.4-km simulations have a later onset of convection than the 1.5-km simulations, but there is no consistent bias of the simulations against the radar observations across the case studies.

Open access
J. A. Curry, C. A. Clayson, W. B. Rossow, R. Reeder, Y.-C. Zhang, P. J. Webster, G. Liu, and R.-S. Sheu

An integrated approach is presented for determining from several different satellite datasets all of the components of the tropical sea surface fluxes of heat, freshwater, and momentum. The methodology for obtaining the surface turbulent and radiative fluxes uses physical properties of the atmosphere and surface retrieved from satellite observations as inputs into models of the surface turbulent and radiative flux processes. The precipitation retrieval combines analysis of satellite microwave brightness temperatures with a statistical model employing satellite observations of visible/infrared radiances. A high-resolution dataset has been prepared for the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) intensive observation period (IOP), with a spatial resolution of 50 km and temporal resolution of 3 h. The high spatial resolution is needed to resolve the diurnal and mesoscale storm-related variations of the fluxes. The fidelity of the satellite-derived surface fluxes is examined by comparing them with in situ measurements obtained from ships and aircraft during the TOGA COARE IOP and from vertically integrated budgets of heat and freshwater for the atmosphere and ocean. The root-mean-square differences between the satellite-derived and in situ fluxes are dominated by limitations in the satellite sampling; these are reduced when some averaging is done, particularly for the precipitation (which is from a statistical algorithm) and the surface solar radiation (which uses spatially sampled satellite pixels). Nevertheless, the fluxes are determined with a useful accuracy, even at the highest temporal and spatial resolution. By compiling the fluxes at such high resolution, users of the dataset can decide whether and how to average for particular purposes. For example, over time, space, or similar weather events.

Full access
A. Henderson-Sellers, H. Zhang, G. Berz, K. Emanuel, W. Gray, C. Landsea, G. Holland, J. Lighthill, S-L. Shieh, P. Webster, and K. McGuffie

The very limited instrumental record makes extensive analyses of the natural variability of global tropical cyclone activities difficult in most of the tropical cyclone basins. However, in the two regions where reasonably reliable records exist (the North Atlantic and the western North Pacific), substantial multidecadal variability (particularly for intense Atlantic hurricanes) is found, but there is no clear evidence of long-term trends. Efforts have been initiated to use geological and geomorphological records and analysis of oxygen isotope ratios in rainfall recorded in cave stalactites to establish a paleoclimate of tropical cyclones, but these have not yet produced definitive results. Recent thermodynamical estimation of the maximum potential intensities (MPI) of tropical cyclones shows good agreement with observations.

Although there are some uncertainties in these MPI approaches, such as their sensitivity to variations in parameters and failure to include some potentially important interactions such as ocean spray feedbacks, the response of upper-oceanic thermal structure, and eye and eyewall dynamics, they do appear to be an objective tool with which to predict present and future maxima of tropical cyclone intensity. Recent studies indicate the MPI of cyclones will remain the same or undergo a modest increase of up to 10%–20%. These predicted changes are small compared with the observed natural variations and fall within the uncertainty range in current studies. Furthermore, the known omissions (ocean spray, momentum restriction, and possibly also surface to 300-hPa lapse rate changes) could all operate to mitigate the predicted intensification.

A strong caveat must be placed on analysis of results from current GCM simulations of the “tropical-cyclone-like” vortices. Their realism, and hence prediction skill (and also that of “embedded” mesoscale models), is greatly limited by the coarse resolution of current GCMs and the failure to capture environmental factors that govern cyclone intensity. Little, therefore, can be said about the potential changes of the distribution of intensities as opposed to maximum achievable intensity. Current knowledge and available techniques are too rudimentary for quantitative indications of potential changes in tropical cyclone frequency.

The broad geographic regions of cyclogenesis and therefore also the regions affected by tropical cyclones are not expected to change significantly. It is emphasized that the popular belief that the region of cyclogenesis will expand with the 26°C SST isotherm is a fallacy. The very modest available evidence points to an expectation of little or no change in global frequency. Regional and local frequencies could change substantially in either direction, because of the dependence of cyclone genesis and track on other phenomena (e.g., ENSO) that are not yet predictable. Greatly improved skills from coupled global ocean–atmosphere models are required before improved predictions are possible.

Full access
A. P. Sokolov, P. H. Stone, C. E. Forest, R. Prinn, M. C. Sarofim, M. Webster, S. Paltsev, C. A. Schlosser, D. Kicklighter, S. Dutkiewicz, J. Reilly, C. Wang, B. Felzer, J. M. Melillo, and H. D. Jacoby
Full access
A. P. Sokolov, P. H. Stone, C. E. Forest, R. Prinn, M. C. Sarofim, M. Webster, S. Paltsev, C. A. Schlosser, D. Kicklighter, S. Dutkiewicz, J. Reilly, C. Wang, B. Felzer, J. M. Melillo, and H. D. Jacoby

Abstract

The Massachusetts Institute of Technology (MIT) Integrated Global System Model is used to make probabilistic projections of climate change from 1861 to 2100. Since the model’s first projections were published in 2003, substantial improvements have been made to the model, and improved estimates of the probability distributions of uncertain input parameters have become available. The new projections are considerably warmer than the 2003 projections; for example, the median surface warming in 2091–2100 is 5.1°C compared to 2.4°C in the earlier study. Many changes contribute to the stronger warming; among the more important ones are taking into account the cooling in the second half of the twentieth century due to volcanic eruptions for input parameter estimation and a more sophisticated method for projecting gross domestic product (GDP) growth, which eliminated many low-emission scenarios.

However, if recently published data, suggesting stronger twentieth-century ocean warming, are used to determine the input climate parameters, the median projected warming at the end of the twenty-first century is only 4.1°C. Nevertheless, all ensembles of the simulations discussed here produce a much smaller probability of warming less than 2.4°C than implied by the lower bound of the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) projected likely range for the A1FI scenario, which has forcing very similar to the median projection in this study. The probability distribution for the surface warming produced by this analysis is more symmetric than the distribution assumed by the IPCC because of a different feedback between the climate and the carbon cycle, resulting from the inclusion in this model of the carbon–nitrogen interaction in the terrestrial ecosystem.

Full access
P. J. Webster, E. F. Bradley, C. W. Fairall, J. S. Godfrey, P. Hacker, R. A. Houze Jr., R. Lukas, Y. Serra, J. M. Hummon, T. D. M. Lawrence, C. A. Russell, M. N. Ryan, K. Sahami, and P. Zuidema

The methods and initial results of an extensive pilot study, the Joint Air–Sea Monsoon Interaction Experiment (JASMINE) held in the Indian Ocean during the summer of 1999, are described. The experimental design was based on the precept that the monsoon sways back and forth from active to inactive (or break) phases and that these intraseasonal oscillations are coupled ocean–atmosphere phenomena that are important components of the monsoon system. JASMINE is the first comprehensive study of the coupled ocean–atmosphere system in the eastern Indian Ocean and the southern Bay of Bengal. Two research vessels, the NOAA ship Ronald H. Brown and the Australian research vessel Franklin, totaled 52 days of surveillance in April–June and September, with 388 conductivity–temperature–depth (CTD) casts and 272 radiosonde ascents. In addition, both ships carried identical flux systems to measure the ocean–atmosphere interaction. The Brown had five radar systems and profilers, including a cloud radar and a Doppler C-band rain radar.

Active and break periods of the monsoon, and the transitions between these phases, and the onset of the 1999 South Asian summer monsoon occurred during JASMINE. The undisturbed and disturbed periods had vast differences in the net heating of the ocean, ranging from daily averages of +150 W m−2 during the former to −100 W m−2 in the latter. Accompanying these changes in the monsoon phase were distinct states of the upper ocean and the atmosphere, including complete reversals of the near-equatorial currents on the timescales of weeks. Diurnal variability occurred in both phases of the monsoon, particularly in near-surface thermodynamical quantities in undisturbed periods and in convection when conditions were disturbed. The JASMINE observations and analyses are compared with those from other tropical regions. Differences in the surface fluxes between disturbed and undisturbed periods appear to be greater in the monsoon than in the western Pacific Ocean. However, in both regions, it is argued that the configuration of convection and vertical wind shear acts as a positive feedback to accelerate low-level westerly winds. Outstanding questions and tentative plans for the future are also discussed.

Full access
J. A. Curry, A. Bentamy, M. A. Bourassa, D. Bourras, E. F. Bradley, M. Brunke, S. Castro, S. H. Chou, C. A. Clayson, W. J. Emery, L. Eymard, C. W. Fairall, M. Kubota, B. Lin, W. Perrie, R. A. Reeder, I. A. Renfrew, W. B. Rossow, J. Schulz, S. R. Smith, P. J. Webster, G. A. Wick, and X. Zeng

High-resolution surface fluxes over the global ocean are needed to evaluate coupled atmosphere–ocean models and weather forecasting models, provide surface forcing for ocean models, understand the regional and temporal variations of the exchange of heat between the atmosphere and ocean, and provide a large-scale context for field experiments. Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel, the SEAFLUX Project has been initiated to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans to complement the existing products for surface radiation fluxes and precipitation. The SEAFLUX Project includes the following elements: a library of in situ data, with collocated satellite data to be used in the evaluation and improvement of global flux products; organized intercomparison projects, to evaluate and improve bulk flux models and determination from the satellite of the input parameters; and coordinated evaluation of the flux products in the context of applications, such as forcing ocean models and evaluation of coupled atmosphere–ocean models. The objective of this paper is to present an overview of the status of global ocean surface flux products, the methodology being used by SEAFLUX, and the prospects for improvement of satellite-derived flux products.

Full access
Rachel A. Stratton, Catherine A. Senior, Simon B. Vosper, Sonja S. Folwell, Ian A. Boutle, Paul D. Earnshaw, Elizabeth Kendon, Adrian P. Lock, Andrew Malcolm, James Manners, Cyril J. Morcrette, Christopher Short, Alison J. Stirling, Christopher M. Taylor, Simon Tucker, Stuart Webster, and Jonathan M. Wilkinson

Abstract

A convection-permitting multiyear regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) Improving Model Processes for African Climate (IMPALA) project, and its configuration, domain, and forcing data are described here in detail. The model [Pan-African Convection-Permitting Regional Climate Simulation with the Met Office UM (CP4-Africa)] uses a 4.5-km horizontal grid spacing at the equator and is run without a convection parameterization, nested within a global atmospheric model driven by observations at the sea surface, which does include a convection scheme. An additional regional simulation, with identical resolution and physical parameterizations to the global model, but with the domain, land surface, and aerosol climatologies of CP4-Africa, has been run to aid in the understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parameterization and resolution. The effect of enforcing moisture conservation in CP4-Africa is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first five years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent.

Open access