Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: S. Y. Gao x
- Refine by Access: All Content x
Abstract
Stratospheric circulation is investigated by further analyses of three years of Stratospheric And Mesospheric Sounder (SAMS) data. Eddy effects on constituent transport are investigated with two transport formulations the transformed Eulerian mean formulation and the effective transport formulation. The transformed Eulerian mean formulation, together with calculated residual mean winds (v̄*, w̄*), is used to delineate regions, or times, of significant eddy contributions to constituent transport. Significant regions are found in the stratosphere in all seasons, not only in the Northern Hemisphere (NH) winter high latitudes (where contributions from nonlinear and nonsteady perturbations in sudden and final warming events are expected), but also in the midlatitude, middle stratosphere in autumn and at winter-summer low latitudes near the stratopause. Questionably large calculated
The effective transport calculations involving CH4 show that in July most local change in mixing ratio in the upper stratosphere is attributable to mean advection. In the upper stratosphere and lower mesosphere during NH summer-autumn, pulses of enhanced mixing ratio (related to an apparent coupling of semiannual and annual circulation components) propagate from low northern latitudes into both hemispheres. The behavior is similar to that predicted by diabatic models, but under equinox conditions. The calculated (v̄†, w̄†) fields for June–July exhibit this cellular feature for both CH4 and N2O. In the extratropics at stratopause heights, particularly in the SH, large local amplitudes of the semiannual component may be attributable in part to this mean meridional advection from summer to winter hemisphere. Each year, both CH4 and N2O show features consistent with significant NH autumnal vertical and meridional transport at high latitudes in the lower mesosphere.
Abstract
Stratospheric circulation is investigated by further analyses of three years of Stratospheric And Mesospheric Sounder (SAMS) data. Eddy effects on constituent transport are investigated with two transport formulations the transformed Eulerian mean formulation and the effective transport formulation. The transformed Eulerian mean formulation, together with calculated residual mean winds (v̄*, w̄*), is used to delineate regions, or times, of significant eddy contributions to constituent transport. Significant regions are found in the stratosphere in all seasons, not only in the Northern Hemisphere (NH) winter high latitudes (where contributions from nonlinear and nonsteady perturbations in sudden and final warming events are expected), but also in the midlatitude, middle stratosphere in autumn and at winter-summer low latitudes near the stratopause. Questionably large calculated
The effective transport calculations involving CH4 show that in July most local change in mixing ratio in the upper stratosphere is attributable to mean advection. In the upper stratosphere and lower mesosphere during NH summer-autumn, pulses of enhanced mixing ratio (related to an apparent coupling of semiannual and annual circulation components) propagate from low northern latitudes into both hemispheres. The behavior is similar to that predicted by diabatic models, but under equinox conditions. The calculated (v̄†, w̄†) fields for June–July exhibit this cellular feature for both CH4 and N2O. In the extratropics at stratopause heights, particularly in the SH, large local amplitudes of the semiannual component may be attributable in part to this mean meridional advection from summer to winter hemisphere. Each year, both CH4 and N2O show features consistent with significant NH autumnal vertical and meridional transport at high latitudes in the lower mesosphere.
Abstract
Quantitative knowledge of the water and energy exchanges in agroecosystems is vital for irrigation management and modeling crop production. In this study, the seasonal and annual variabilities of evapotranspiration (ET) and energy exchanges were investigated under two different crop environments—flooded and aerobic soil conditions—using three years (June 2014–May 2017) of eddy covariance observations over a rice–wheat rotation in eastern China. Across the whole rice–wheat rotation, the average daily ET rates in the rice paddies and wheat fields were 3.6 and 2.4 mm day−1, respectively. The respective average seasonal ET rates were 473 and 387 mm for rice and wheat fields, indicating a higher water consumption for rice than for wheat. Averaging for the three cropping seasons, rice paddies had 52% more latent heat flux than wheat fields, whereas wheat had 73% more sensible heat flux than rice paddies. This resulted in a lower Bowen ratio in the rice paddies (0.14) than in the wheat fields (0.4). Because eddy covariance observations of turbulent heat fluxes are typically less than the available energy (R n − G; i.e., net radiation minus soil heat flux), energy balance closure (EBC) therefore does not occur. For rice, EBC was greatest at the vegetative growth stages (mean: 0.90) after considering the water heat storage, whereas wheat had its best EBC at the ripening stages (mean: 0.86).
Abstract
Quantitative knowledge of the water and energy exchanges in agroecosystems is vital for irrigation management and modeling crop production. In this study, the seasonal and annual variabilities of evapotranspiration (ET) and energy exchanges were investigated under two different crop environments—flooded and aerobic soil conditions—using three years (June 2014–May 2017) of eddy covariance observations over a rice–wheat rotation in eastern China. Across the whole rice–wheat rotation, the average daily ET rates in the rice paddies and wheat fields were 3.6 and 2.4 mm day−1, respectively. The respective average seasonal ET rates were 473 and 387 mm for rice and wheat fields, indicating a higher water consumption for rice than for wheat. Averaging for the three cropping seasons, rice paddies had 52% more latent heat flux than wheat fields, whereas wheat had 73% more sensible heat flux than rice paddies. This resulted in a lower Bowen ratio in the rice paddies (0.14) than in the wheat fields (0.4). Because eddy covariance observations of turbulent heat fluxes are typically less than the available energy (R n − G; i.e., net radiation minus soil heat flux), energy balance closure (EBC) therefore does not occur. For rice, EBC was greatest at the vegetative growth stages (mean: 0.90) after considering the water heat storage, whereas wheat had its best EBC at the ripening stages (mean: 0.86).
Abstract
Because of their dependence on water, natural and human systems are highly sensitive to changes in the hydrologic cycle. The authors introduce a new measure of hydroclimatic intensity (HY-INT), which integrates metrics of precipitation intensity and dry spell length, viewing the response of these two metrics to global warming as deeply interconnected. Using a suite of global and regional climate model experiments, it is found that increasing HY-INT is a consistent and ubiquitous signature of twenty-first-century, greenhouse gas–induced global warming. Depending on the region, the increase in HY-INT is due to an increase in precipitation intensity, dry spell length, or both. Late twentieth-century observations also exhibit dominant positive HY-INT trends, providing a hydroclimatic signature of late twentieth-century warming. The authors find that increasing HY-INT is physically consistent with the response of both precipitation intensity and dry spell length to global warming. Precipitation intensity increases because of increased atmospheric water holding capacity. However, increases in mean precipitation are tied to increases in surface evaporation rates, which are lower than for atmospheric moisture. This leads to a reduction in the number of wet days and an increase in dry spell length. This analysis identifies increasing hydroclimatic intensity as a robust integrated response to global warming, implying increasing risks for systems that are sensitive to wet and dry extremes and providing a potential target for detection and attribution of hydroclimatic changes.
Abstract
Because of their dependence on water, natural and human systems are highly sensitive to changes in the hydrologic cycle. The authors introduce a new measure of hydroclimatic intensity (HY-INT), which integrates metrics of precipitation intensity and dry spell length, viewing the response of these two metrics to global warming as deeply interconnected. Using a suite of global and regional climate model experiments, it is found that increasing HY-INT is a consistent and ubiquitous signature of twenty-first-century, greenhouse gas–induced global warming. Depending on the region, the increase in HY-INT is due to an increase in precipitation intensity, dry spell length, or both. Late twentieth-century observations also exhibit dominant positive HY-INT trends, providing a hydroclimatic signature of late twentieth-century warming. The authors find that increasing HY-INT is physically consistent with the response of both precipitation intensity and dry spell length to global warming. Precipitation intensity increases because of increased atmospheric water holding capacity. However, increases in mean precipitation are tied to increases in surface evaporation rates, which are lower than for atmospheric moisture. This leads to a reduction in the number of wet days and an increase in dry spell length. This analysis identifies increasing hydroclimatic intensity as a robust integrated response to global warming, implying increasing risks for systems that are sensitive to wet and dry extremes and providing a potential target for detection and attribution of hydroclimatic changes.
Abstract
Recent progress in satellite remote-sensing techniques for precipitation estimation, along with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. One year (August 1998–July 1999) of tropical rainfall estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system were used to produce monthly means of rainfall diurnal cycles at hourly and 1° × 1° scales over a domain (30°S–30°N, 80°E–10°W) from the Americas across the Pacific Ocean to Australia and eastern Asia.
The results demonstrate pronounced diurnal variability of tropical rainfall intensity at synoptic and regional scales. Seasonal signals of diurnal rainfall are presented over the large domain of the tropical Pacific Ocean, especially over the ITCZ and South Pacific convergence zone (SPCZ) and neighboring continents. The regional patterns of tropical rainfall diurnal cycles are specified in the Amazon, Mexico, the Caribbean Sea, Calcutta, Bay of Bengal, Malaysia, and northern Australia. Limited validations for the results include comparisons of 1) the PERSIANN-derived diurnal cycle of rainfall at Rondonia, Brazil, with that derived from the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) radar data; 2) the PERSIANN diurnal cycle of rainfall over the western Pacific Ocean with that derived from the data of the optical rain gauges mounted on the TOGA-moored buoys; and 3) the monthly accumulations of rainfall samples from the orbital TMI and PR surface rainfall with the accumulations of concurrent PERSIANN estimates. These comparisons indicate that the PERSIANN-derived diurnal patterns at the selected resolutions produce estimates that are similar in magnitude and phase.
Abstract
Recent progress in satellite remote-sensing techniques for precipitation estimation, along with more accurate tropical rainfall measurements from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and precipitation radar (PR) instruments, have made it possible to monitor tropical rainfall diurnal patterns and their intensities from satellite information. One year (August 1998–July 1999) of tropical rainfall estimates from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system were used to produce monthly means of rainfall diurnal cycles at hourly and 1° × 1° scales over a domain (30°S–30°N, 80°E–10°W) from the Americas across the Pacific Ocean to Australia and eastern Asia.
The results demonstrate pronounced diurnal variability of tropical rainfall intensity at synoptic and regional scales. Seasonal signals of diurnal rainfall are presented over the large domain of the tropical Pacific Ocean, especially over the ITCZ and South Pacific convergence zone (SPCZ) and neighboring continents. The regional patterns of tropical rainfall diurnal cycles are specified in the Amazon, Mexico, the Caribbean Sea, Calcutta, Bay of Bengal, Malaysia, and northern Australia. Limited validations for the results include comparisons of 1) the PERSIANN-derived diurnal cycle of rainfall at Rondonia, Brazil, with that derived from the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) radar data; 2) the PERSIANN diurnal cycle of rainfall over the western Pacific Ocean with that derived from the data of the optical rain gauges mounted on the TOGA-moored buoys; and 3) the monthly accumulations of rainfall samples from the orbital TMI and PR surface rainfall with the accumulations of concurrent PERSIANN estimates. These comparisons indicate that the PERSIANN-derived diurnal patterns at the selected resolutions produce estimates that are similar in magnitude and phase.
Abstract
Urbanization modifies atmospheric energy and moisture balances, forming distinct features [e.g., urban heat islands (UHIs) and enhanced or decreased precipitation]. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies, b) improving high-resolution urban weather and air quality forecast models, and c) enhancing urban weather forecasts for societal applications (e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency response management). Preliminary SURF observational and modeling results are shown (i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluation).
Abstract
Urbanization modifies atmospheric energy and moisture balances, forming distinct features [e.g., urban heat islands (UHIs) and enhanced or decreased precipitation]. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies, b) improving high-resolution urban weather and air quality forecast models, and c) enhancing urban weather forecasts for societal applications (e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency response management). Preliminary SURF observational and modeling results are shown (i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluation).
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
Abstract
—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES
Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.
In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.
Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.
While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.
The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.
In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.
In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.
Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.
A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.
As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.
In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.
On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.