Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Sabrina Speich x
  • All content x
Clear All Modify Search
Yann Friocourt, Sybren Drijfhout, Bruno Blanke, and Sabrina Speich

Abstract

The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.

Full access
Yann Friocourt, Bruno Blanke, Sybren Drijfhout, and Sabrina Speich

Abstract

The seasonality of the baroclinic slope current system along the western European margin in the Bay of Biscay and along the northern Iberian Peninsula is investigated in a joint analysis of an analytical model and numerical simulations with various forcings. A distinction is made between local winds and basin-scale winds, in which the effect of the latter is indirectly apparent through the basin-scale density gradients. The slope currents are mainly forced by the large-scale structure of the density field. The analysis indicates significant differences in the behavior of the uppermost slope current and of the deeper currents. At all depths, seasonal variations in the large-scale density structure of the ocean alter the strength of the slope currents but are not able to cause robust, long-lasting reversals. Reversals of the uppermost slope current appear to be caused by changes in the alongshore component of the local wind stress, provided that the opposing forcing from the density structure is weak enough. However, the deeper slope currents are not very much affected by the wind stress, so that flow reversals can be explained neither by the wind nor by seasonal changes in the density structure. A numerical simulation suggests that the reversals of the deeper slope currents are at least partly forced by seasonal changes in the flow upstream of the slope current system. The authors demonstrate that the larger part of these seasonal changes is associated with annual baroclinic Rossby waves caused by the seasonal cycle of the large-scale wind stress over the whole basin.

Full access
Bruno Blanke, Michel Arhan, Sabrina Speich, and Karine Pailler

Abstract

The monthly mean velocity, salinity, and temperature fields of a numerical simulation of the World Ocean climatological circulation are used to study the intensity and pathways associated with the meridional overturning in the North Atlantic. Lagrangian diagnostics based on the computation of several hundreds of thousands of individual three-dimensional trajectories are combined with an appropriate study of water mass potential densities in order to describe the warm and cold limbs of the so-called conveyor belt. Circulation schemes are established for both limbs of the overturning, and can be easily compared with schemes or transport estimates deduced from direct measurements, as the model temperature and salinity fields are constrained to remain close to the observed climatology. Diagnostics emphasize most typical pathways as well as main mass transfers that lead to the establishment of such numerical circulation schemes.

Full access
Daniele Iudicone, Gurvan Madec, Bruno Blanke, and Sabrina Speich

Abstract

Despite the renewed interest in the Southern Ocean, there are yet many unknowns because of the scarcity of measurements and the complexity of the thermohaline circulation. Hence the authors present here the analysis of the thermohaline circulation of the Southern Ocean of a steady-state simulation of a coupled ice–ocean model. The study aims to clarify the roles of surface fluxes and internal mixing, with focus on the mechanisms of the upper branch of the overturning. A quantitative dynamical analysis of the water-mass transformation has been performed using a new method. Surface fluxes, including the effect of the penetrative solar radiation, produce almost 40 Sv (1 Sv ≡ 106 m3 s−1) of Subantarctic Mode Water while about 5 Sv of the densest water masses (γ > 28.2) are formed by brine rejection on the shelves of Antarctica and in the Weddell Sea. Mixing transforms one-half of the Subantarctic Mode Water into intermediate water and Upper Circumpolar Deep Water while bottom water is produced by Lower Circumpolar Deep Water and North Atlantic Deep Water mixing with shelf water. The upwelling of part of the North Atlantic Deep Water inflow is due to internal processes, mainly downward propagation of the surface freshwater excess via vertical mixing at the base of the mixed layer. A complementary Lagrangian analysis of the thermohaline circulation will be presented in a companion paper.

Full access
Daniele Iudicone, Sabrina Speich, Gurvan Madec, and Bruno Blanke

Abstract

Recent studies have proposed the Southern Ocean as the site of large water-mass transformations; other studies propose that this basin is among the main drivers for North Atlantic Deep Water (NADW) circulation. A modeling contribution toward understanding the role of this basin in the global thermohaline circulation can thus be of interest. In particular, key pathways and transformations associated with the thermohaline circulation in the Southern Ocean of an ice–ocean coupled model have been identified here through the extensive use of quantitative Lagrangian diagnostics. The model Southern Ocean is characterized by a shallow overturning circulation transforming 20 Sv (1 Sv ≡ 106 m3 s−1) of thermocline waters into mode waters and a deep overturning related to the formation of Antarctic Bottom Water. Mode and intermediate waters contribute to 80% of the upper branch of the overturning in the Atlantic Ocean north of 30°S. A net upwelling of 11.5 Sv of Circumpolar Deep Waters is simulated in the Southern Ocean. Antarctic Bottom Water upwells into deep layers in the Pacific basin, forming Circumpolar Deep Water and subsurface thermocline water. The Southern Ocean is a powerful consumer of NADW: about 40% of NADW net export was found to upwell in the Southern Ocean, and 40% is transformed into Antarctic Bottom Water. The upwelling occurs south of the Polar Front and mainly in the Indian and Pacific Ocean sectors. The transformation of NADW to lighter water occurs in two steps: vertical mixing at the base of the mixed layer first decreases the salinity of the deep water upwelling south of the Antarctic Circumpolar Current, followed by heat input by air–sea and diffusive fluxes to complete the transformation to mode and intermediate waters.

Full access
Molly Baringer, Mariana B. Bif, Tim Boyer, Seth M. Bushinsky, Brendan R. Carter, Ivona Cetinić, Don P. Chambers, Lijing Cheng, Sanai Chiba, Minhan Dai, Catia M. Domingues, Shenfu Dong, Andrea J. Fassbender, Richard A. Feely, Eleanor Frajka-Williams, Bryan A. Franz, John Gilson, Gustavo Goni, Benjamin D. Hamlington, Zeng-Zhen Hu, Boyin Huang, Masayoshi Ishii, Svetlana Jevrejeva, William E. Johns, Gregory C. Johnson, Kenneth S. Johnson, John Kennedy, Marion Kersalé, Rachel E. Killick, Peter Landschützer, Matthias Lankhorst, Tong Lee, Eric Leuliette, Feili Li, Eric Lindstrom, Ricardo Locarnini, Susan Lozier, John M. Lyman, John J. Marra, Christopher S. Meinen, Mark A. Merrifield, Gary T. Mitchum, Ben Moat, Didier Monselesan, R. Steven Nerem, Renellys C. Perez, Sarah G. Purkey, Darren Rayner, James Reagan, Nicholas Rome, Alejandra Sanchez-Franks, Claudia Schmid, Joel P. Scott, Uwe Send, David A. Siegel, David A. Smeed, Sabrina Speich, Paul W. Stackhouse Jr., William Sweet, Yuichiro Takeshita, Philip R. Thompson, Joaquin A. Triñanes, Martin Visbeck, Denis L. Volkov, Rik Wanninkhof, Robert A. Weller, Toby K. Westberry, Matthew J. Widlansky, Susan E. Wijffels, Anne C. Wilber, Lisan Yu, Weidong Yu, and Huai-Min Zhang
Full access