Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Sajad Vahedizade x
  • Refine by Access: All Content x
Clear All Modify Search
Yalei You
George Huffman
Veljko Petkovic
Lisa Milani
John X. Yang
Ardeshir Ebtehaj
Sajad Vahedizade
, and
Guojun Gu


This study assesses the level-2 snowfall retrieval results from 11 passive microwave radiometers generated by the version 5 Goddard profiling algorithm (GPROF) relative to two spaceborne radars: CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Measurement (GPM) Ku-band Precipitation Radar (KuPR). These 11 radiometers include six conical scanning radiometers [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), its successor sensor AMSR2, GPM Microwave Imager (GMI), and three Special Sensor Microwave Imager/Sounders (SSMIS)] and five cross-track scanning radiometers [Advanced Technology Microwave Sounder (ATMS) and four Microwave Humidity Sounders (MHS)]. Results show that over ocean conical scanning radiometers have better detection and intensity estimation skills than cross-track sensors, likely due to the availability and usage of the low-frequency channels (e.g., 19 and 37 GHz). Over land, AMSR-E and AMSR2 have noticeably worse performance than other sensors, primarily due to the lack of higher than 89-GHz channels (e.g., 150, 166, and 183 GHz). Over both land and ocean, all 11 sensors severely underestimate the snowfall intensity, which propagates to the widely used level 3 precipitation product [i.e., Integrated Multi-satelliteE Retrievals for GPM (IMERG)]. These conclusions hold regardless of using either KuPR or CPR as the reference, though the statistical metrics vary quantitatively. The conclusions drawn from these comparisons apply solely to the GPROF version 5 algorithm.

Free access