Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Samuel R. Browning x
- Refine by Access: All Content x
Abstract
A numerical method of solving the equation of radiative transfer for a plane parallel, horizontally homogeneous medium is presented. The method is applicable for problems with nonconservative scattering as well as for conservative scattering problems. Comparison of results for the reflected and transmitted radiation from this method with existing solutions for conservative Rayleigh scattering shows that, for optical depths up to 1-0, the present scheme is accurate to within ±0.007 unit total intensity and ±1.0 per cent polarization for an incident flux of π units per unit normal area. Results are presented for the reflected and transmitted intensity and per cent polarization for optical depths 2.0 and 4.0, for a particular problem of conservative Rayleigh scattering.
Abstract
A numerical method of solving the equation of radiative transfer for a plane parallel, horizontally homogeneous medium is presented. The method is applicable for problems with nonconservative scattering as well as for conservative scattering problems. Comparison of results for the reflected and transmitted radiation from this method with existing solutions for conservative Rayleigh scattering shows that, for optical depths up to 1-0, the present scheme is accurate to within ±0.007 unit total intensity and ±1.0 per cent polarization for an incident flux of π units per unit normal area. Results are presented for the reflected and transmitted intensity and per cent polarization for optical depths 2.0 and 4.0, for a particular problem of conservative Rayleigh scattering.
Abstract
In this paper, calculations are presented of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos (A > 0.4), an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).
The first part of the paper concerns itself with the computational techniques employed in this study. The method employs a numerical solution to the equation of radiation transfer and is essentially a modification of an older technique used by the authors. The modifications are detailed, and comparisons with the older technique are presented.
Abstract
In this paper, calculations are presented of the change in reflected flux by the earth-atmosphere system in response to increases in the atmospheric aerosol loading for a range of complex indices of refraction, solar elevation angle and ground albedo. Results show that, for small values of ground albedo, the reflected solar flux may either increase or decrease with increasing aerosol loadings, depending upon the complex part of the index of refraction of the aerosols. For high ground albedos (A > 0.4), an increase in aerosol levels always results in a decrease of reflected flux (i.e., a warming of the earth-atmosphere system).
The first part of the paper concerns itself with the computational techniques employed in this study. The method employs a numerical solution to the equation of radiation transfer and is essentially a modification of an older technique used by the authors. The modifications are detailed, and comparisons with the older technique are presented.
Abstract
Theoretical computations of the intensity and polarization of diffusively transmitted sunlight are presented for two wavelengths, λ = 4290 Å and λ = 5000 Å. The computations are for atmospheres containing various distributions of aerosols, as well as normal molecular constituents, and allow for all significant orders of scattering. The theoretical computations are compared with observations, and it is shown that inclusion of aerosols in the theoretical models results in considerably better agreement between observation and theory than can be achieved by assuming a pure molecular atmosphere for the theoretical computations.
Abstract
Theoretical computations of the intensity and polarization of diffusively transmitted sunlight are presented for two wavelengths, λ = 4290 Å and λ = 5000 Å. The computations are for atmospheres containing various distributions of aerosols, as well as normal molecular constituents, and allow for all significant orders of scattering. The theoretical computations are compared with observations, and it is shown that inclusion of aerosols in the theoretical models results in considerably better agreement between observation and theory than can be achieved by assuming a pure molecular atmosphere for the theoretical computations.
Abstract
It can be shown, theoretically, that the polarization properties of laser light scattered by a volume of air containing aerosols include considerable information as to the size distribution of the aerosols. A theoretical inversion model, utilizing the above information, is developed, which uses the Stokes parameters of the angularly scattered laser light as input data. These input data are generated theoretically from assumed size distribution functions of the aerosols. Both “perfect” measurements and measurements into which random errors are introduced are employed. These data are then used in the inversion model to generate predicted size distribution functions. Numerical experiments are performed with 0, 1 and 2% random error in the observations, in order to determine what accuracy is required in the lidar measurements. Comparisons between the actual and predicted functions are then made in order to assess the accuracy of the model.
Abstract
It can be shown, theoretically, that the polarization properties of laser light scattered by a volume of air containing aerosols include considerable information as to the size distribution of the aerosols. A theoretical inversion model, utilizing the above information, is developed, which uses the Stokes parameters of the angularly scattered laser light as input data. These input data are generated theoretically from assumed size distribution functions of the aerosols. Both “perfect” measurements and measurements into which random errors are introduced are employed. These data are then used in the inversion model to generate predicted size distribution functions. Numerical experiments are performed with 0, 1 and 2% random error in the observations, in order to determine what accuracy is required in the lidar measurements. Comparisons between the actual and predicted functions are then made in order to assess the accuracy of the model.