Search Results
You are looking at 1 - 10 of 28 items for
- Author or Editor: Sarah A. Tessendorf x
- Refine by Access: All Content x
Abstract
This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil.
Abstract
This study discusses radar and lightning observations of two multicellular storms observed during the Severe Thunderstorm Electrification and Precipitation Study. The Lightning Mapping Array data indicated that the charge structure of the 19 June 2000 storm was consistent with a normal polarity tripole, while the 22 June 2000 storm exhibited an overall inverted tripolar charge structure. The 19 June storm consisted of weaker convection and produced little to no hail and moderate total flash rates peaking between 80 and 120 min−1. The cells in the 22 June 2000 storm were much more vigorous, exhibited strong, broad updrafts, and produced large quantities of hail, as well as extraordinary total flash rates as high as 500 min−1. The National Lightning Detection Network (NLDN) indicated that the 19 June storm produced mostly negative cloud-to-ground (CG) lightning, while the 22 June storm produced predominantly positive CG lightning, peaking at 10 min−1 just after two cells merged. However, the Los Alamos Sferic Array indicated that many of the positive CG strokes reported by the NLDN in the 22 June storm were intracloud discharges known as narrow bipolar events. Negative CG lightning was also observed in the 22 June storm, but typically came to ground beneath an inverted dipole in the storm anvil.
Abstract
This second part of a two-part study examines the lightning and charge structure evolution of the 29 June 2000 tornadic supercell observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Data from the National Lightning Detection Network and the New Mexico Tech Lightning Mapping Array (LMA) are used to quantify the total and cloud-to-ground (CG) flash rates. Additionally, the LMA data are used to infer gross charge structure and to determine the origin locations and charge regions involved in the CG flashes. The total flash rate reached nearly 300 min−1 and was well correlated with radar-inferred updraft and graupel echo volumes. Intracloud flashes accounted for 95%–100% of the total lightning activity during any given minute. Nearly 90% of the CG flashes delivered a positive charge to ground (+CGs). The charge structure during the first 20 min of this storm consisted of a midlevel negative charge overlying lower positive charge with no evidence of an upper positive charge. The charge structure in the later (severe) phase was more complex but maintained what could be roughly described as an inverted tripole, dominated by a deep midlevel (5–9 km MSL) region of positive charge. The storm produced only two CG flashes (both positive) in the first 2 h of lightning activity, both of which occurred during a brief surge in updraft and hail production. Frequent +CG flashes began nearly coincident with dramatic increases in storm updraft, hail production, total flash rate, and the formation of an F1 tornado. The +CG flashes tended to cluster in or just downwind of the heaviest precipitation, which usually contained hail. The +CG flashes all originated between 5 and 9 km MSL, centered at 6.8 km (−10°C), and tapped LMA-inferred positive charge both in the precipitation core and (more often) in weaker reflectivity extending downwind. All but one of the −CG flashes originated from >9 km MSL and tended to strike near the precipitation core.
Abstract
This second part of a two-part study examines the lightning and charge structure evolution of the 29 June 2000 tornadic supercell observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Data from the National Lightning Detection Network and the New Mexico Tech Lightning Mapping Array (LMA) are used to quantify the total and cloud-to-ground (CG) flash rates. Additionally, the LMA data are used to infer gross charge structure and to determine the origin locations and charge regions involved in the CG flashes. The total flash rate reached nearly 300 min−1 and was well correlated with radar-inferred updraft and graupel echo volumes. Intracloud flashes accounted for 95%–100% of the total lightning activity during any given minute. Nearly 90% of the CG flashes delivered a positive charge to ground (+CGs). The charge structure during the first 20 min of this storm consisted of a midlevel negative charge overlying lower positive charge with no evidence of an upper positive charge. The charge structure in the later (severe) phase was more complex but maintained what could be roughly described as an inverted tripole, dominated by a deep midlevel (5–9 km MSL) region of positive charge. The storm produced only two CG flashes (both positive) in the first 2 h of lightning activity, both of which occurred during a brief surge in updraft and hail production. Frequent +CG flashes began nearly coincident with dramatic increases in storm updraft, hail production, total flash rate, and the formation of an F1 tornado. The +CG flashes tended to cluster in or just downwind of the heaviest precipitation, which usually contained hail. The +CG flashes all originated between 5 and 9 km MSL, centered at 6.8 km (−10°C), and tapped LMA-inferred positive charge both in the precipitation core and (more often) in weaker reflectivity extending downwind. All but one of the −CG flashes originated from >9 km MSL and tended to strike near the precipitation core.
Abstract
This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (<2 cm) hail, with one surface report of large (≥2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s−1, and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning.
Abstract
This study addresses the kinematic, microphysical, and electrical evolution of an isolated convective storm observed on 3 June 2000 during the Severe Thunderstorm Electrification and Precipitation Study field campaign. Doppler-derived vertical velocities, radar reflectivity, hydrometeor classifications from polarimetric radar, and Lightning Mapping Array (LMA) charge structures are examined over a nearly 3-h period. This storm, characterized as a low-precipitation supercell, produced modest amounts of hail, determined by fuzzy-logic hydrometeor classification as mostly small (<2 cm) hail, with one surface report of large (≥2 cm) hail. Doppler-derived updraft speeds peaked between 20 and 25 m s−1, and reflectivity was never greater than 60 dBZ. The most striking feature of this storm was its total lack of cloud-to-ground (CG) lightning. Though this storm was electrically active, with maximum flash rates near 30 per minute, no CG flashes of either polarity were detected. The charge structure inferred from the LMA observations was consistent with an inverted dipole, defined as having a midlevel positive charge region below upper-level negative charge. Inverted charge structures have typically been considered conducive to producing positive CG lightning; however, the 3 June storm appeared to lack the lower negative charge layer below the inverted dipole that is thought to provide the downward electrical bias necessary for positive CG lightning.
Abstract
This paper describes idealized simulations of a squall line observed on 20 June 2007, in central Oklahoma. Results are compared with measurements from dual-polarization radar and surface disdrometer. The baseline model configuration qualitatively reproduces key storm features, but underpredicts precipitation rates and generally overpredicts median volume raindrop diameter. The sensitivity of model simulations to parameterization of raindrop breakup is tested under different low-level (0–2.5 km) environmental vertical wind shears. Storm characteristics exhibit considerable sensitivity to the parameterization of breakup, especially for moderate (0.0048 s−1) shear. Simulations with more efficient breakup tend to have higher domain-mean precipitation rates under both moderate and higher (0.0064 s−1) shear, despite the smaller mean drop size and hence lower mass-weighted fall speed and higher evaporation rate for a given rainwater content. In these runs, higher evaporation leads to stronger cold pools, faster propagation, larger storm size, greater updraft mass flux (but weaker convective updrafts at mid- and upper levels), and greater total condensation that compensates for the increased evaporation to give more surface precipitation. The impact of drop breakup on mass-weighted fall speed is also important and leads to a nonmonotonic response of storm characteristics (surface precipitation, cold pool strength, etc.) to changes in breakup efficiency under moderate wind shear. In contrast, the response is generally monotonic at higher wind shear. Interactions between drop breakup, convective dynamics, cold pool intensity, and low-level environmental wind shear are also described in the context of “Rotunno–Klemp–Weisman (RKW) theory,” which addresses how density currents evolve in sheared environments.
Abstract
This paper describes idealized simulations of a squall line observed on 20 June 2007, in central Oklahoma. Results are compared with measurements from dual-polarization radar and surface disdrometer. The baseline model configuration qualitatively reproduces key storm features, but underpredicts precipitation rates and generally overpredicts median volume raindrop diameter. The sensitivity of model simulations to parameterization of raindrop breakup is tested under different low-level (0–2.5 km) environmental vertical wind shears. Storm characteristics exhibit considerable sensitivity to the parameterization of breakup, especially for moderate (0.0048 s−1) shear. Simulations with more efficient breakup tend to have higher domain-mean precipitation rates under both moderate and higher (0.0064 s−1) shear, despite the smaller mean drop size and hence lower mass-weighted fall speed and higher evaporation rate for a given rainwater content. In these runs, higher evaporation leads to stronger cold pools, faster propagation, larger storm size, greater updraft mass flux (but weaker convective updrafts at mid- and upper levels), and greater total condensation that compensates for the increased evaporation to give more surface precipitation. The impact of drop breakup on mass-weighted fall speed is also important and leads to a nonmonotonic response of storm characteristics (surface precipitation, cold pool strength, etc.) to changes in breakup efficiency under moderate wind shear. In contrast, the response is generally monotonic at higher wind shear. Interactions between drop breakup, convective dynamics, cold pool intensity, and low-level environmental wind shear are also described in the context of “Rotunno–Klemp–Weisman (RKW) theory,” which addresses how density currents evolve in sheared environments.
Abstract
Methods to improve the representation of hail in the Thompson-Eidhammer microphysics scheme are explored. A new two-moment and predicted density graupel category is implemented into the Thompson-Eidhammer scheme. Additionally, the one-moment graupel category’s intercept parameter is modified, based on hail observations, to shift the properties of the graupel category to become more hail-like since the category is designed to represent both graupel and hail. Finally, methods to diagnose maximum expected hail size at the surface and aloft are implemented. The original Thompson-Eidhammer version, the newly implemented two-moment and predicted density graupel version, and the modified (to be more hail-like) one-moment version are evaluated using a case that occurred during the Plains Elevated Convection at Night (PECAN) field campaign, during which hail-producing storms merged into a strong mesoscale convective system. The three versions of the scheme are evaluated for their ability to predict hail sizes compared to observed hail sizes from storm reports and estimated from radar, their ability to predict radar reflectivity signatures at various altitudes, and their ability to predict cold-pool features like temperature and wind speed. One key benefit of using the two-moment and predicted density graupel category is that the simulated reflectivity values in the upper-levels of discrete storms are clearly improved. This improvement coincides with a significant reduction in the areal extent of graupel aloft, also seen when using the updated one-moment scheme. The two-moment and predicted density graupel scheme is also better able to predict a wide variety of hail sizes at the surface, including large (> 2-inch diameter) hail that was observed during this case.
Abstract
Methods to improve the representation of hail in the Thompson-Eidhammer microphysics scheme are explored. A new two-moment and predicted density graupel category is implemented into the Thompson-Eidhammer scheme. Additionally, the one-moment graupel category’s intercept parameter is modified, based on hail observations, to shift the properties of the graupel category to become more hail-like since the category is designed to represent both graupel and hail. Finally, methods to diagnose maximum expected hail size at the surface and aloft are implemented. The original Thompson-Eidhammer version, the newly implemented two-moment and predicted density graupel version, and the modified (to be more hail-like) one-moment version are evaluated using a case that occurred during the Plains Elevated Convection at Night (PECAN) field campaign, during which hail-producing storms merged into a strong mesoscale convective system. The three versions of the scheme are evaluated for their ability to predict hail sizes compared to observed hail sizes from storm reports and estimated from radar, their ability to predict radar reflectivity signatures at various altitudes, and their ability to predict cold-pool features like temperature and wind speed. One key benefit of using the two-moment and predicted density graupel category is that the simulated reflectivity values in the upper-levels of discrete storms are clearly improved. This improvement coincides with a significant reduction in the areal extent of graupel aloft, also seen when using the updated one-moment scheme. The two-moment and predicted density graupel scheme is also better able to predict a wide variety of hail sizes at the surface, including large (> 2-inch diameter) hail that was observed during this case.
Abstract
A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.
Abstract
A new microphysics scheme has been developed based on the prediction of bulk particle properties for a single ice-phase category, in contrast to the traditional approach of separating ice into various predefined species (e.g., cloud ice, snow, and graupel). In this paper, the new predicted particle properties (P3) scheme, described in Part I of this series, is tested in three-dimensional simulations using the Weather Research and Forecasting (WRF) Model for two contrasting well-observed cases: a midlatitude squall line and winter orographic precipitation. Results are also compared with simulations using other schemes in WRF. Simulations with P3 can produce a wide variety of particle characteristics despite having only one free ice-phase category. For the squall line, it produces dense, fast-falling, hail-like ice near convective updraft cores and lower-density, slower-falling ice elsewhere. Sensitivity tests show that this is critical for simulating high precipitation rates observed along the leading edge of the storm. In contrast, schemes that represent rimed ice as graupel, with lower fall speeds than hail, produce lower peak precipitation rates and wider, less distinct, and less realistic regions of high convective reflectivity. For the orographic precipitation case, P3 produces areas of relatively fast-falling ice with characteristics of rimed snow and low- to medium-density graupel on the windward slope. This leads to less precipitation on leeward slopes and more on windward slopes compared to the other schemes that produce large amounts of snow relative to graupel (with generally the opposite for schemes with significant graupel relative to snow). Overall, the new scheme produces reasonable results for a reduced computational cost.
Abstract
This is a two-part study that addresses the kinematic, microphysical, and electrical aspects of a severe storm that occurred in western Kansas on 29 June 2000 observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) field campaign. In this first part, polarimetric and Doppler radar data are used along with a simple particle growth model to examine the evolution of the kinematic and microphysical properties of the storm from its earliest developing phase through its mature and dissipating phases. During its severe stage, the storm exhibited frequent positive cloud-to-ground lightning strikes, very large (∼5 cm) hail, and a tornado.
Doppler-derived winds, radar reflectivity, and hydrometeor classifications from the polarimetric data over a nearly 4-h period are presented. It is shown that updraft velocity and vertical vorticity had to reach magnitudes of at least 10 m s−1 and 10−2 s−1 and occupy major portions of the storm before it could produce most of the observed severe storm characteristics. Furthermore, the establishment of cyclonic horizontal flow around the right flank of the updraft core was essential for hail production. Most of the largest hail grew from near millimeter-sized particles that originated in the mid- to upper-level stagnation region that resulted from obstacle-like flow of environmental air around the divergent outflow from the upper part of the updraft. These recycling embryonic particles descended around the right flank of the updraft core and reentered the updraft, intermingling with other smaller particles that had grown from cloud base along the main low-level updraft stream.
Abstract
This is a two-part study that addresses the kinematic, microphysical, and electrical aspects of a severe storm that occurred in western Kansas on 29 June 2000 observed during the Severe Thunderstorm Electrification and Precipitation Study (STEPS) field campaign. In this first part, polarimetric and Doppler radar data are used along with a simple particle growth model to examine the evolution of the kinematic and microphysical properties of the storm from its earliest developing phase through its mature and dissipating phases. During its severe stage, the storm exhibited frequent positive cloud-to-ground lightning strikes, very large (∼5 cm) hail, and a tornado.
Doppler-derived winds, radar reflectivity, and hydrometeor classifications from the polarimetric data over a nearly 4-h period are presented. It is shown that updraft velocity and vertical vorticity had to reach magnitudes of at least 10 m s−1 and 10−2 s−1 and occupy major portions of the storm before it could produce most of the observed severe storm characteristics. Furthermore, the establishment of cyclonic horizontal flow around the right flank of the updraft core was essential for hail production. Most of the largest hail grew from near millimeter-sized particles that originated in the mid- to upper-level stagnation region that resulted from obstacle-like flow of environmental air around the divergent outflow from the upper part of the updraft. These recycling embryonic particles descended around the right flank of the updraft core and reentered the updraft, intermingling with other smaller particles that had grown from cloud base along the main low-level updraft stream.
Abstract
During the Queensland Cloud Seeding Research Program, the “CP2” polarimetric radar parameter differential radar reflectivity Z dr was used to examine the raindrop size evolution in both maritime and continental clouds. The focus of this paper is to examine the natural variability of the drop size distribution. The primary finding is that there are two basic raindrop size evolutions, one associated with continental air masses characterized by relatively high aerosol concentrations and long air trajectories over land and the other associated with maritime air masses with lower aerosol concentrations. The size evolution difference is during the growth stage of the radar echoes. The differential radar reflectivity in the growing continental clouds is dominated by large raindrops, whereas in the maritime clouds differential reflectivity is dominated by small raindrops and drizzle. The drop size evolution in many of the maritime air masses was very similar to those observed in the maritime air of the Caribbean Sea observed with the NCAR S-band polarimetric radar (S-Pol) during the Rain in Cumulus over the Ocean (RICO) experiment. Because the tops of the Queensland continental clouds ascended almost 2 times as fast as the maritime ones in their growth stage, both dynamical and aerosol factors may be important for the systematic difference in drop size evolution. Recommendations are advanced for future field programs to understand better the causes for the observed variability in drop size evolution. Also, considering the natural variability in drop size evolution, comments are provided on conducting and evaluating cloud seeding experiments.
Abstract
During the Queensland Cloud Seeding Research Program, the “CP2” polarimetric radar parameter differential radar reflectivity Z dr was used to examine the raindrop size evolution in both maritime and continental clouds. The focus of this paper is to examine the natural variability of the drop size distribution. The primary finding is that there are two basic raindrop size evolutions, one associated with continental air masses characterized by relatively high aerosol concentrations and long air trajectories over land and the other associated with maritime air masses with lower aerosol concentrations. The size evolution difference is during the growth stage of the radar echoes. The differential radar reflectivity in the growing continental clouds is dominated by large raindrops, whereas in the maritime clouds differential reflectivity is dominated by small raindrops and drizzle. The drop size evolution in many of the maritime air masses was very similar to those observed in the maritime air of the Caribbean Sea observed with the NCAR S-band polarimetric radar (S-Pol) during the Rain in Cumulus over the Ocean (RICO) experiment. Because the tops of the Queensland continental clouds ascended almost 2 times as fast as the maritime ones in their growth stage, both dynamical and aerosol factors may be important for the systematic difference in drop size evolution. Recommendations are advanced for future field programs to understand better the causes for the observed variability in drop size evolution. Also, considering the natural variability in drop size evolution, comments are provided on conducting and evaluating cloud seeding experiments.
Abstract
This paper presents an evaluation of the precipitation patterns and seedability of orographic clouds in Wyoming using SNOTEL precipitation data and a high-resolution multiyear model simulation over an 8-yr period. A key part of assessing the potential for cloud seeding is to understand the natural precipitation patterns and how often atmospheric conditions and clouds meet cloud-seeding criteria. The analysis shows that high-resolution model simulations are useful tools for studying patterns of orographic precipitation and establishing the seedability of clouds by providing information that is either missed by or not available from current observational networks. This study indicates that the ground-based seeding potential in some mountain ranges in Wyoming is limited by flow blocking and/or prevailing winds that were not normal to the barrier to produce upslope flow. Airborne seeding generally had the most potential for all of the mountain ranges that were studied.
Abstract
This paper presents an evaluation of the precipitation patterns and seedability of orographic clouds in Wyoming using SNOTEL precipitation data and a high-resolution multiyear model simulation over an 8-yr period. A key part of assessing the potential for cloud seeding is to understand the natural precipitation patterns and how often atmospheric conditions and clouds meet cloud-seeding criteria. The analysis shows that high-resolution model simulations are useful tools for studying patterns of orographic precipitation and establishing the seedability of clouds by providing information that is either missed by or not available from current observational networks. This study indicates that the ground-based seeding potential in some mountain ranges in Wyoming is limited by flow blocking and/or prevailing winds that were not normal to the barrier to produce upslope flow. Airborne seeding generally had the most potential for all of the mountain ranges that were studied.
Abstract
The primary objective of this study was to estimate the percentage of U.S. tornadoes that are spawned annually by squall lines and bow echoes, or quasi-linear convective systems (QLCSs). This was achieved by examining radar reflectivity images for every tornado event recorded during 1998–2000 in the contiguous United States. Based on these images, the type of storm associated with each tornado was classified as cell, QLCS, or other.
Of the 3828 tornadoes in the database, 79% were produced by cells, 18% were produced by QLCSs, and the remaining 3% were produced by other storm types, primarily rainbands of landfallen tropical cyclones. Geographically, these percentages as well as those based on tornado days exhibited wide variations. For example, 50% of the tornado days in Indiana were associated with QLCSs.
In an examination of other tornado attributes, statistically more weak (F1) and fewer strong (F2–F3) tornadoes were associated with QLCSs than with cells. QLCS tornadoes were more probable during the winter months than were cells. And finally, QLCS tornadoes displayed a comparatively higher and statistically significant tendency to occur during the late night/early morning hours. Further analysis revealed a disproportional decrease in F0–F1 events during this time of day, which led the authors to propose that many (perhaps as many as 12% of the total) weak QLCSs tornadoes were not reported.
Abstract
The primary objective of this study was to estimate the percentage of U.S. tornadoes that are spawned annually by squall lines and bow echoes, or quasi-linear convective systems (QLCSs). This was achieved by examining radar reflectivity images for every tornado event recorded during 1998–2000 in the contiguous United States. Based on these images, the type of storm associated with each tornado was classified as cell, QLCS, or other.
Of the 3828 tornadoes in the database, 79% were produced by cells, 18% were produced by QLCSs, and the remaining 3% were produced by other storm types, primarily rainbands of landfallen tropical cyclones. Geographically, these percentages as well as those based on tornado days exhibited wide variations. For example, 50% of the tornado days in Indiana were associated with QLCSs.
In an examination of other tornado attributes, statistically more weak (F1) and fewer strong (F2–F3) tornadoes were associated with QLCSs than with cells. QLCS tornadoes were more probable during the winter months than were cells. And finally, QLCS tornadoes displayed a comparatively higher and statistically significant tendency to occur during the late night/early morning hours. Further analysis revealed a disproportional decrease in F0–F1 events during this time of day, which led the authors to propose that many (perhaps as many as 12% of the total) weak QLCSs tornadoes were not reported.