Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sarah Bereznicki x
  • All content x
Clear All Modify Search
Sonia Lasher-Trapp, Sarah Anderson-Bereznicki, Ashley Shackelford, Cynthia H. Twohy, and James G. Hudson


Supercooled large drops (SLD) can be a significant hazard for aviation. Past studies have shown that warm-rain processes are prevalent, or even dominant, in stratiform clouds containing SLD, but the primary factors that control SLD production are still not well understood. Giant aerosol particles have been shown to accelerate the formation of the first drizzle drops in some clouds and thus are a viable source of SLD, but observational support for testing their effectiveness in supercooled stratiform clouds has been lacking. In this study, new observations collected during six research flights from the Alliance Icing Research Study II (AIRS II) are analyzed to assess the factors that may be relevant to SLD formation, with a particular emphasis on the importance of giant aerosol particles. An initial comparison of observed giant aerosol particle number concentrations with the observed SLD suggests that they were present in sufficient numbers to be the source of the SLD. However, microphysical calculations within an adiabatic parcel model, initialized with the observed aerosol distributions and cloud properties, suggest that the giant aerosol particles were only a limited source of SLD. More SLD was produced in the modeled clouds with low droplet concentrations, simply by an efficient warm-rain process acting at temperatures below 0°C. For cases in which the warm-rain process is limited by a higher droplet concentration and small cloud depth/liquid water content, the giant aerosol particles were then the only source of SLD. The modeling results are consistent with the observed trends in SLD across the six AIRS II cases.

Full access
Robert M. Rauber, Bjorn Stevens, Jennifer Davison, Sabine Goke, Olga L. Mayol-Bracero, David Rogers, Paquita Zuidema, Harry T. Ochs III, Charles Knight, Jorgen Jensen, Sarah Bereznicki, Simona Bordoni, Humberto Caro-Gautier, Marilé Colón-Robles, Maylissa Deliz, Shaunna Donaher, Virendra Ghate, Ela Grzeszczak, Colleen Henry, Anne Marie Hertel, Ieng Jo, Michael Kruk, Jason Lowenstein, Judith Malley, Brian Medeiros, Yarilis Méndez-Lopez, Subhashree Mishra, Flavia Morales-García, Louise A. Nuijens, Dennis O'Donnell, Diana L. Ortiz-Montalvo, Kristen Rasmussen, Erin Riepe, Sarah Scalia, Efthymios Serpetzoglou, Haiwei Shen, Michael Siedsma, Jennifer Small, Eric Snodgrass, Panu Trivej, and Jonathan Zawislak

The Rain in Cumulus over the Ocean (RICO) field campaign carried out a wide array of educational activities, including a major first in a field project—a complete mission, including research flights, planned and executed entirely by students. This article describes the educational opportunities provided to the 24 graduate and 9 undergraduate students who participated in RICO.

Full access