Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Sarah D. Ditchek x
  • All content x
Clear All Modify Search
Sarah D. Ditchek, John Molinari, and David Vollaro

Abstract

The ERA-Interim is used to generate azimuthally averaged composites of Atlantic basin tropical cyclones from 1979 to 2014. Both the mean state and the eddy forcing terms exhibited similar radial–vertical structure for all storm intensities, varying only in magnitude. Thus, only major hurricanes are described in detail. Radial inflow and outflow extended beyond the 2000-km radius. Warm anomalies reached 2000 km in the outflow layer. Composite eddy momentum fluxes within the outflow layer were 2.5 times larger than mean momentum fluxes, highlighting the importance of outflow–environment interactions. A balanced vortex equation was applied to understand the role of eddy heat and momentum fluxes. Dominant terms were the lateral eddy heat flux convergence, lateral eddy momentum flux, and eddy Coriolis torque. Each acted to enhance the secondary circulation. The eddy momentum flux terms produced about twice the response of heat flux terms. The circulation created by the eddy Coriolis torque arises from a vertical gradient of mean storm-relative meridional wind in the upper troposphere at outer radii. It is produced by background inertial stability variations that allow stronger outflow on the equatorward side. Overall, the fluxes drive a strengthened secondary circulation that extends to outer radii. Balanced vertical motion is strongest in the upper troposphere in the storm core. A method is proposed for evaluating the role of environmental interaction on tropical cyclone intensity change.

Full access
John Molinari, Michaela Rosenmayer, David Vollaro, and Sarah D. Ditchek

Abstract

The NOAA G-IV aircraft routinely measures vertical aircraft acceleration from the inertial navigation system at 1 Hz. The data provide a measure of turbulence on a 250-m horizontal scale over a layer from 12.8- to 14.8-km elevation. Turbulence in this layer of tropical cyclones was largest by 35%–40% in the inner 200 km of radius and decreased monotonically outward to the 1000-km radius. Turbulence in major hurricanes exceeded that in weaker tropical cyclones. Turbulence data points were divided among three regions of the tropical cyclone: cirrus canopy; outside the cirrus canopy; and a transition zone between them. Without exception, turbulence was greater within the canopy and weaker outside the canopy. Nighttime turbulence exceeded daytime turbulence for all radii, especially within the cirrus canopy, implicating radiative forcing as a factor in turbulence generation. A case study of widespread turbulence in Hurricane Ivan (2004) showed that interactions between the hurricane outflow channel and westerlies to the north created a region of absolute vorticity of −6 × 10−5 s−1 in the upper troposphere. Outflow accelerated from the storm center into this inertially unstable region, and visible evidence for turbulence and transverse bands of cirrus appeared radially inward of the inertially unstable region. It is argued that both cloud-radiative forcing and the development of inertial instability within a narrow outflow layer were responsible for the turbulence. In contrast, a second case study (Isabel 2003) displayed strong near-core turbulence in the presence of large positive absolute vorticity and no local inertial instability. Peak turbulence occurred 100 km downwind of the eyewall convection.

Full access
Sarah D. Ditchek, Kristen L. Corbosiero, Robert G. Fovell, and John Molinari

Abstract

Recent research has found that diurnal pulses are ubiquitous features of tropical cyclones. To gain further insight into the characteristics of these pulses, a case study of an electrically active (ACT) cooling pulse and an off-the-clock ACT cooling pulse that occurred in Hurricane Harvey (2017) was conducted. Using GridSat-B1 IR brightness temperatures, World Wide Lightning Location Network (WWLLN) lightning data, the 85–91-GHz channels on microwave satellite imagers, and Level-II Doppler radar reflectivity data from WSR-88D stations (i.e., NEXRAD), these pulses were found to share many similar characteristics: both propagated outward on the right-of-shear side of Harvey and were associated with elevated cloud ice content and high reflectivity. Additionally, using HRRR model output, both pulses were found to be associated with 1) column-deep total condensate, 2) a surface cold pool, 3) an overturning circulation, and 4) an enhanced low-level jet. These characteristics are similar to those found in tropical squall lines, supporting the tropical squall-line interpretation of diurnal pulses put forth in recent studies. A hypothesis for ACT pulse initiation was then introduced, tested, and confirmed: inner rainbands that propagated outward into a more favorable environment for deep convection reinvigorated into ACT pulses that had tropical squall-line characteristics.

Restricted access
Sarah D. Ditchek, William R. Boos, Suzana J. Camargo, and Michael K. Tippett

Abstract

Synoptic-scale monsoon disturbances produce the majority of continental rainfall in the monsoon regions of South Asia and Australia, yet there is little understanding of the conditions that foster development of these low pressure systems. Here a genesis index is used to associate monsoon disturbance genesis in a global domain with monthly mean, climatological environmental variables. This monsoon disturbance genesis index (MDGI) is based on four objectively selected variables: total column water vapor, low-level absolute vorticity, an approximate measure of convective available potential energy, and midtropospheric relative humidity. A Poisson regression is used to estimate the index coefficients. Unlike existing tropical cyclone genesis indices, the MDGI is defined over both land and ocean, consistent with the fact that monsoon disturbance genesis can occur over land. The index coefficients change little from their global values when estimated separately for the Asian–Australian monsoon region or the Indian monsoon region, suggesting that the conditions favorable for monsoon disturbance genesis, and perhaps the dynamics of genesis itself, are common across multiple monsoon regions. Vertical wind shear is found to be a useful predictor in some regional subdomains; although previous studies suggested that baroclinicity may foster monsoon disturbance genesis, here genesis frequency is shown to be reduced in regions of strong climatological vertical shear. The coefficients of the MDGI suggest that monsoon disturbance genesis is fostered by humid, convectively unstable environments that are rich in vorticity. Similarities with indices used to describe the distribution of tropical cyclone genesis are discussed.

Full access
Sarah D. Ditchek, John Molinari, Kristen L. Corbosiero, and Robert G. Fovell

Abstract

Storm-centered IR brightness temperature imagery was used to create 6-h IR brightness temperature difference fields for all Atlantic basin tropical cyclones from 1982 to 2017. Pulses of colder cloud tops were defined objectively by determining critical thresholds for the magnitude of the IR differences, areal coverage of cold-cloud tops, and longevity. Long-lived cooling pulses (≥9 h) were present on 45% of days overall, occurring on 80% of major hurricane days, 64% of minor hurricane days, 46% of tropical storm days, and 24% of tropical depression days. These cooling pulses propagated outward between 8 and 14 m s−1. Short-lived cooling pulses (3–6 h) were found 26.4% of the time. Some days without cooling pulses had events of the opposite sign, which were labeled warming pulses. Long-lived warming pulses occurred 8.5% of the time and propagated outward at the same speed as their cooling pulse counterparts. Only 12.2% of days had no pulses that met the criteria, indicating that pulsing is nearly ubiquitous in tropical cyclones. The environment prior to outward propagation of cooling pulses differed from warming pulse and no pulse days by having more favorable conditions between 0000 and 0300 LT for enhanced inner-core convection: higher SST and ocean heat content, more moisture throughout the troposphere, and stronger low-level vorticity and upper-level divergence.

Full access
Sarah D. Ditchek, T. Connor Nelson, Michaela Rosenmayer, and Kristen L. Corbosiero

Abstract

Despite recent improvements made to tropical cyclone intensity predictions, this study investigates a different approach than those attempted thus far. Here, the overall environmental setup at genesis is evaluated to determine whether it predisposes a storm to reach its future maximum intensity. Variables retrieved from ERA-Interim are used to generate storm-centered composites at the time of genesis for Atlantic basin, main development region TCs from 1979–2015. Composites are stratified by their maximum attained intensity: tropical depressions (GTD), tropical storms (GTS), minor hurricanes (GMN), or major hurricanes (GMJ). A multiple-parameter linear regression is then used to associate the eventual attained intensity of tropical cyclone to the obtained variables at genesis. The regression has an adjusted r 2 of 0.39, which indicates that a statistical relationship is present. Regression coefficients, along with the spatial distribution of variables in the storm-centered composites, indicate that storms that reach higher intensities are associated at genesis with stronger, more compact, low-level vortices, better-defined outflow jets, a more compact region of high midlevel relative humidity, and higher atmospheric water vapor content.

Full access
Sarah D. Ditchek, Kristen L. Corbosiero, Robert G. Fovell, and John Molinari

Abstract

While the frequency and structure of Atlantic basin tropical cyclone diurnal cooling and warming pulses have recently been explored, how often diurnal pulses are associated with deep convection was left unanswered. Here, storm-relative, GridSat-B1, 6-h IR brightness temperature difference fields were supplemented with World Wide Lightning Location Network (WWLLN) data to answer that question. Electrically active, long-lived cooling and warming pulses were defined objectively by determining critical thresholds for the lightning flash density, areal coverage, and longevity within each pulse. Pulses with lightning occurred 61% of the time, with persistently electrically active pulses (≥9 h, ACT) occurring on 38% of pulse days and quasi–electrically active pulses (3–6 h, QUASI) occurring on 23% of pulse days. Electrically inactive pulses (<3 h, INACT) occurred 39% of the time. ACT pulse days had more pulses located right-of-shear, the preferred quadrant for outer-rainband lightning activity, and were associated with more favorable environmental conditions than INACT pulse days. Cooling pulses were more likely to occur in lower-shear environments while warming pulses were more likely to occur in high-shear environments. Finally, while the propagation speeds of ACT and INACT cooling pulses and ACT warming pulses did lend support to the recent gravity wave and tropical squall-line explanations of diurnal pulses, the INACT warming pulses did not and should be studied further.

Free access