Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Sarah Kirkpatrick x
  • All content x
Clear All Modify Search
Sophie C. Lewis, Andrew D. King, and Sarah E. Perkins-Kirkpatrick

Abstract

The term “new normal” has been used in scientific literature and public commentary to contextualize contemporary climate events as an indicator of a changing climate due to enhanced greenhouse warming. A new normal has been used broadly but tends to be descriptive and ambiguously defined. Here we review previous studies conceptualizing this idea of a new climatological normal and argue that this term should be used cautiously and with explicit definition in order to avoid confusion. We provide a formal definition of a new climate normal relative to present based around record-breaking contemporary events and explore the timing of when such extremes become statistically normal in the future model simulations. Applying this method to the record-breaking global-average 2015 temperatures as a reference event and a suite of model climate models, we determine that 2015 global annual-average temperatures will be the new normal by 2040 in all emissions scenarios. At the regional level, a new normal can be delayed through aggressive greenhouse gas emissions reductions. Using this specific case study to investigate a climatological new normal, our approach demonstrates the greater value of the concept of a climatological new normal for understanding and communicating climate change when the term is explicitly defined. This approach moves us one step closer to understanding how current extremes will change in the future in a warming world.

Full access
Peter B. Gibson, Andrew J. Pitman, Ruth Lorenz, and Sarah E. Perkins-Kirkpatrick

Abstract

Understanding the physical drivers of heat waves is essential for improving short-term forecasts of individual events and long-term projections of heat waves under climate change. This study provides the first analysis of the influence of the large-scale circulation on Australian heat waves, conditional on the land surface conditions. Circulation types, sourced from reanalysis, are used to characterize the different large-scale circulation patterns that drive heat wave events across Australia. The importance of horizontal temperature advection is illustrated in these circulation patterns, and the pattern occurrence frequency is shown to reorganize through different modes of climate variability. It is further shown that the relative likelihood of a particular synoptic situation being associated with a heat wave is strongly modulated by the localized partitioning of available energy between surface sensible and latent heat fluxes (as measured through evaporative fraction) in many regions in reanalysis data. In particular, a several-fold increase in the likelihood of heat wave day occurrence is found during days of reduced evaporative fraction under favorable circulation conditions. The atmospheric circulation and land surface conditions linked to heat waves in reanalysis were then examined in the context of CMIP5 climate model projections. Large uncertainty was found to exist for many regions, especially in terms of the direction of future land surface changes and in terms of the magnitude of atmospheric circulation changes. Efforts to constrain uncertainty in both atmospheric and land surface processes in climate models, while challenging, should translate to more robust regional projections of heat waves.

Full access
Eric C. J. Oliver, Sarah E. Perkins-Kirkpatrick, Neil J. Holbrook, and Nathaniel L. Bindoff
Open access
Sophie C. Lewis, Stephanie A.P. Blake, Blair Trewin, Mitchell T. Black, Andrew J. Dowdy, Sarah E. Perkins-Kirkpatrick, Andrew D. King, and Jason J. Sharples
Free access
Florian Rauser, Mohammad Alqadi, Steve Arowolo, Noël Baker, Joel Bedard, Erik Behrens, Nilay Dogulu, Lucas Gatti Domingues, Ariane Frassoni, Julia Keller, Sarah Kirkpatrick, Gaby Langendijk, Masoumeh Mirsafa, Salauddin Mohammad, Ann Kristin Naumann, Marisol Osman, Kevin Reed, Marion Rothmüller, Vera Schemann, Awnesh Singh, Sebastian Sonntag, Fiona Tummon, Dike Victor, Marcelino Q. Villafuerte, Jakub P. Walawender, and Modathir Zaroug

Abstract

The exigencies of the global community toward Earth system science will increase in the future as the human population, economies, and the human footprint on the planet continue to grow. This growth, combined with intensifying urbanization, will inevitably exert increasing pressure on all ecosystem services. A unified interdisciplinary approach to Earth system science is required that can address this challenge, integrate technical demands and long-term visions, and reconcile user demands with scientific feasibility. Together with the research arms of the World Meteorological Organization, the Young Earth System Scientists community has gathered early-career scientists from around the world to initiate a discussion about frontiers of Earth system science. To provide optimal information for society, Earth system science has to provide a comprehensive understanding of the physical processes that drive the Earth system and anthropogenic influences. This understanding will be reflected in seamless prediction systems for environmental processes that are robust and instructive to local users on all scales. Such prediction systems require improved physical process understanding, more high-resolution global observations, and advanced modeling capability, as well as high-performance computing on unprecedented scales. At the same time, the robustness and usability of such prediction systems also depend on deepening our understanding of the entire Earth system and improved communication between end users and researchers. Earth system science is the fundamental baseline for understanding the Earth’s capacity to accommodate humanity, and it provides a means to have a rational discussion about the consequences and limits of anthropogenic influence on Earth. Without its progress, truly sustainable development will be impossible.

Full access