Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sarah Ragen x
  • All content x
Clear All Modify Search
Sarah Ragen, Marie-Aude Pradal, and Anand Gnanadesikan

Abstract

This study examines the impact of changing the lateral diffusion coefficient A Redi on the transport of the Antarctic Circumpolar Current (ACC). The lateral diffusion coefficient A Redi is poorly constrained, with values ranging across an order of magnitude in climate models. The ACC is difficult to accurately simulate, and there is a large spread in eastward transport in the Southern Ocean (SO) in these models. This paper examines how much of that spread can be attributed to different eddy parameterization coefficients. A coarse-resolution, fully coupled model suite was run with A Redi = 400, 800, 1200, and 2400 m2 s−1. Additionally, two simulations were run with two-dimensional representations of the mixing coefficient based on satellite altimetry. Relative to the 400 m2 s−1 case, the 2400 m2 s−1 case exhibits 1) an 11% decrease in average wind stress from 50° to 65°S, 2) a 20% decrease in zonally averaged eastward transport in the SO, and 3) a 14% weaker transport through the Drake Passage. The decrease in transport is well explained by changes in the thermal current shear, largely due to increases in ocean density occurring on the northern side of the ACC. In intermediate waters these increases are associated with changes in the formation of intermediate waters in the North Pacific. We hypothesize that the deep increases are associated with changes in the wind stress curl allowing Antarctic Bottom Water to escape and flow northward.

Restricted access
Marysa M. Laguë, Marianne Pietschnig, Sarah Ragen, Timothy A. Smith, and David S. Battisti

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Restricted access
Marysa M. Laguë, Marianne Pietschnig, Sarah Ragen, Timothy A. Smith, and David S. Battisti

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the mid-latitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land-surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominate. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Restricted access