Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sarah T. Bedka x
  • Refine by Access: All Content x
Clear All Modify Search
Bryan A. Baum, Andrew J. Heymsfield, Ping Yang, and Sarah T. Bedka

Abstract

This study reports on the use of in situ data obtained in midlatitude and tropical ice clouds from airborne sampling probes and balloon-borne replicators as the basis for the development of bulk scattering models for use in satellite remote sensing applications. Airborne sampling instrumentation includes the two-dimensional cloud (2D-C), two-dimensional precipitation (2D-P), high-volume precipitation spectrometer (HVPS), cloud particle imager (CPI), and NCAR video ice particle sampler (VIPS) probes. Herein the development of a comprehensive set of microphysical models based on in situ measurements of particle size distributions (PSDs) is discussed. Two parameters are developed and examined: ice water content (IWC) and median mass diameter Dm. Comparisons are provided between the IWC and Dm values derived from in situ measurements obtained during a series of field campaigns held in the midlatitude and tropical regions and those calculated from a set of modeled ice particles used for light-scattering calculations. The ice particle types considered in this study include droxtals, hexagonal plates, solid columns, hollow columns, aggregates, and 3D bullet rosettes. It is shown that no single habit accurately replicates the derived IWC and Dm values, but a mixture of habits can significantly improve the comparison of these bulk microphysical properties. In addition, the relationship between Dm and the effective particle size D eff, defined as 1.5 times the ratio of ice particle volume to projected area for a given PSD, is investigated. Based on these results, a subset of microphysical models is chosen as the basis for the development of ice cloud bulk scattering models in Part II of this study.

Full access
Bryan A. Baum, Ping Yang, Andrew J. Heymsfield, Steven Platnick, Michael D. King, Y-X. Hu, and Sarah T. Bedka

Abstract

This study examines the development of bulk single-scattering properties of ice clouds, including single-scattering albedo, asymmetry factor, and phase function, for a set of 1117 particle size distributions obtained from analysis of the First International Satellite Cloud Climatology Project Regional Experiment (FIRE)-I, FIRE-II, Atmospheric Radiation Measurement Program intensive observation period, Tropical Rainfall Measuring Mission Kwajalein Experiment (KWAJEX), and the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) data. The primary focus is to develop band-averaged models appropriate for use by the Moderate Resolution Imaging Spectroradiometer (MODIS) imager on the Earth Observing System Terra and Aqua platforms, specifically for bands located at wavelengths of 0.65, 1.64, 2.13, and 3.75 μm. The results indicate that there are substantial differences in the bulk scattering properties of ice clouds formed in areas of deep convection and those that exist in areas of much lower updraft velocities. Band-averaged bulk scattering property results obtained from a particle-size-dependent mixture of ice crystal habits are compared with those obtained assuming only solid hexagonal columns. The single-scattering albedo is lower for hexagonal columns than for a habit mixture for the 1.64-, 2.13-, and 3.75-μm bands, with the differences increasing with wavelength. In contrast, the asymmetry factors obtained from the habit mixture and only the solid hexagonal column are most different at 0.65 μm, with the differences decreasing as wavelength increases. At 3.75 μm, the asymmetry factor results from the two habit assumptions are almost indistinguishable. The asymmetry factor, single-scattering albedo, and scattering phase functions are also compared with the MODIS version-1 (V1) models. Differences between the current and V1 models can be traced to the microphysical models and specifically to the number of both the smallest and the largest particles assumed in the size distributions.

Full access
John R. Mecikalski, Wayne F. Feltz, John J. Murray, David B. Johnson, Kristopher M. Bedka, Sarah T. Bedka, Anthony J. Wimmers, Michael Pavolonis, Todd A. Berendes, Julie Haggerty, Pat Minnis, Ben Bernstein, and Earle Williams

Advanced Satellite Aviation Weather Products (ASAP) was jointly initiated by the NASA Applied Sciences Program and the NASA Aviation Safety and Security Program in 2002. The initiative provides a valuable bridge for transitioning new and existing satellite information and products into Federal Aviation Administration (FAA) Aviation Weather Research Program (AWRP) efforts to increase the safety and efficiency of project addresses hazards such as convective weather, turbulence (clear air and cloud induced), icing, and volcanic ash, and is particularly applicable in extending the monitoring of weather over data-sparse areas, such as the oceans and other observationally remote locations.

ASAP research is conducted by scientists from NASA, the FAA AWRP's Product Development Teams (PDT), NOAA, and the academic research community. In this paper we provide a summary of activities since the inception of ASAP that emphasize the use of current-generation satellite technologies toward observing and mitigating specified aviation hazards. A brief overview of future ASAP goals is also provided in light of the next generation of satellite sensors (e.g., hyperspectral; high spatial resolution) to become operational in the 2007–18 time frame.

Full access