Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sayak K. Biswas x
  • All content x
Clear All Modify Search
Daniel J. Cecil and Sayak K. Biswas


Surface wind speed retrievals have been generated and evaluated using Hurricane Imaging Radiometer (HIRAD) measurements from flights over Hurricane Joaquin, Hurricane Patricia, Hurricane Marty, and the remnants of Tropical Storm Erika—all in 2015. Procedures are described here for producing maps of brightness temperature, which are subsequently used for retrievals of surface wind speed and rain rate across a ~50-km-wide swath for each flight leg. An iterative retrieval approach has been developed to take advantage of HIRAD’s measurement characteristics. Validation of the wind speed retrievals has been conducted, using 636 dropsondes released from the same WB-57 high-altitude aircraft carrying HIRAD during the Tropical Cyclone Intensity (TCI) experiment. The HIRAD wind speed retrievals exhibit very small bias relative to the dropsondes, for winds of tropical storm strength (17.5 m s−1) or greater. HIRAD has reduced sensitivity to winds weaker than tropical storm strength and a small positive bias (~2 m s−1). Two flights with predominantly weak winds according to the dropsondes have abnormally large errors from HIRAD and large positive biases. From the other flights, the root-mean-square differences between HIRAD and the dropsonde winds are 4.1 m s−1 (33%) for winds below tropical storm strength, 5.6 m s−1 (25%) for tropical storm–strength winds, and 6.3 m s−1 (16%) for hurricane-strength winds. The mean absolute differences for those three categories are 3.2 m s−1 (25%), 4.3 m s−1 (19%), and 4.8 m s−1 (12%), respectively, with a bias near zero for winds of tropical storm and hurricane strength.

Full access
Corey G. Amiot, Sayak K. Biswas, Timothy J. Lang, and David I. Duncan


Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation Radiometer (AMPR) have yielded physically realistic brightness temperatures (Tb) from the Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization Tb were converted to horizontally and vertically polarized Tb via dual-polarization deconvolution, and linear regression equations were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using simulated AMPR Tb and modeled atmospheric profiles. These equations were tested using AMPR Tb collected during four OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results from the same dataset, while WV and WS were also compared with in situ data.

Geophysical calculations using simulated Tb yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS root-mean-square deviations (RMSD) were 0.11 mm, 1.28 mm, and 1.11 m s−1, respectively, with median absolute deviations (MedAD) of 2.26 x 10−2 mm, 0.22 mm, and 0.55 m s−1, respectively. When applied to OLYMPEX/RADEX data, the new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 × 10−2 mm, 2.00 mm, and 2.35 m s−1, respectively, and MedAD were 2.88 × 10−2 mm, 1.14 mm, and 1.82 m s−1, respectively. WV MedAD between the new equations and dropsondes were 2.10 and 1.80 mm at the time and location of minimum dropsonde altitude, respectively, while WS MedAD were 1.15 and 1.53 m s−1, respectively, further indicating the utility of these equations.

Restricted access