Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Scott Jensen x
  • All content x
Clear All Modify Search
Scott E. Giangrande, Mary Jane Bartholomew, Mick Pope, Scott Collis, and Michael P. Jensen

Abstract

The variability of rainfall and drop size distributions (DSDs) as a function of large-scale atmospheric conditions and storm characteristics is investigated using measurements from the Atmospheric Radiation Measurement Program (ARM) facility at Darwin, Australia. Observations are obtained from an impact disdrometer with a near continuous record of operation over five consecutive wet seasons (2006–11). Bulk rainfall characteristics are partitioned according to diurnal accumulation, convective and stratiform precipitation classifications, objective monsoonal regime, and MJO phase. Findings support previous Darwin studies suggesting a significant diurnal and DSD parameter signal associated with both convective–stratiform and wet season monsoonal regime classification. Negligible MJO phase influence is determined for cumulative disdrometric statistics over the Darwin location.

Full access
Jothiram Vivekanandan, Virendra P. Ghate, Jorgen B. Jensen, Scott M. Ellis, and M. Christian Schwartz

Abstract

This paper describes a technique for estimating the liquid water content (LWC) and a characteristic particle diameter in stratocumulus clouds using radar and lidar observations. The uncertainty in LWC estimate from radar and lidar measurements is significantly reduced once the characteristic particle diameter is known. The technique is independent of the drop size distribution. It is applicable for a broad range of W-band reflectivity Z between −30 and 0 dBZ and all values of lidar backscatter β observations. No partitioning of cloud or drizzle is required on the basis of an arbitrary threshold of Z as in prior studies. A method for estimating droplet diameter and LWC was derived from the electromagnetic simulations of radar and lidar observations. In situ stratocumulus cloud and drizzle probe spectra were input to the electromagnetic simulation. The retrieved droplet diameter and LWC were validated using in situ measurements from the southeastern Pacific Ocean. The retrieval method was applied to radar and lidar measurements from the northeastern Pacific. Uncertainty in the retrieved droplet diameter and LWC that are due to the measurement errors in radar and lidar backscatter measurements are 7% and 14%, respectively. The retrieved LWC was validated using the concurrent G-band radiometer estimates of the liquid water path.

Open access
Usama M. Anber, Scott E. Giangrande, Leo J. Donner, and Michael P. Jensen

Abstract

Mixing of environmental air into clouds, or entrainment, has been identified as a major contributor to erroneous climate predictions made by modern comprehensive climate and numerical weather prediction models. Despite receiving extensive attention, the ad hoc treatment of this convective-scale process in global models remains poor. On the other hand, while limited-area high-resolution nonhydrostatic models can directly resolve entrainment, their sensitivity to model resolution, especially with the lack of benchmark mass flux observations, limits their applicability. Here, the dataset from the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign focusing on radar retrievals of convective updraft vertical velocities is used with the aid of cloud-resolving model simulations of four deep convective events over the Amazon to provide insights into entrainment. Entrainment and detrainment are diagnosed from the model simulations by applying the mass continuity equation over cloud volumes, in which grid cells are identified by some thresholds of updraft vertical velocity and cloud condensates, and accounting for the sources and sinks of the air mass. Entrainment is then defined as the environmental air intruding into convective cores causing cloud volume to shrink, while detrainment is defined as cloudy grid cells departing the convective core and causing cloud volume to expand. It is found that the diagnosed entrainment from the simulated convective events is strongly correlated to the inverse of the updraft vertical velocities in convective cores, which enables a more robust estimation of the mixing time scale. This highlights the need for improved observational capabilities for sampling updraft velocities across diverse geographic and cloud conditions. Evaluation of a number of assumptions used to represent entrainment in parameterization schemes is also presented, as contrasted against the diagnosed one.

Full access
Kevin Barjenbruch, Carol M. Werner, Randall Graham, Cody Oppermann, Glenn Blackwelder, Jeff Williams, Glen Merrill, Scott Jensen, and Justin Connolly

Abstract

Over the past several decades, Utah has experienced rapid population growth, resulting in increased demand on Utah’s existing interstate and arterial infrastructure. In the Salt Lake City, Utah, metropolitan area, recurring traffic congestion (i.e., peak commute times) and nonrecurring congestion (weather related) result in an estimated average annual cost of $449 million. Recent Utah Department of Transportation (UDOT) studies have confirmed that inclement weather plays a significant role in nonrecurring congestion and associated negative impacts. In an effort to measure and potentially mitigate weather-related traffic congestion, a cooperative research study between academic (University of Utah), state [Utah Department of Transportation (UDOT)], federal (National Weather Service), and private sector (Weathernet) entities was undertaken.

Driver awareness surveys were conducted for two significant winter storms along the Wasatch Front urban corridor. Participants typically used media and personal sources for gathering weather and road information, with government sources (UDOT and NWS) used less frequently. Use of government and personal sources were significant predictors of behavior change. Satisfaction with all information sources was high. The most frequent commuting changes reported were route changes and shifts in travel schedule, especially leaving early to avoid the storm. Self-reported actions from interviewees were supported by measured changes in speed, flow, and travel time from the Performance Measurement System (PeMS) utilized by UDOT. The long-term goal is to use these results to provide insight into how the weather enterprise might more effectively communicate hazard information to the public in a manner that leads to improved response (change travel times, modes, etc.).

Full access
Yuying Zhang, Shaocheng Xie, Stephen A. Klein, Roger Marchand, Pavlos Kollias, Eugene E. Clothiaux, Wuyin Lin, Karen Johnson, Dustin Swales, Alejandro Bodas-Salcedo, Shuaiqi Tang, John M. Haynes, Scott Collis, Michael Jensen, Nitin Bharadwaj, Joseph Hardin, and Bradley Isom
Open access
Yuichiro Takeshita, Brent D. Jones, Kenneth S. Johnson, Francisco P. Chavez, Daniel L. Rudnick, Marguerite Blum, Kyle Conner, Scott Jensen, Jacqueline S. Long, Thom Maughan, Keaton L. Mertz, Jeffrey T. Sherman, and Joseph K. Warren

Abstract

The California Current System is thought to be particularly vulnerable to ocean acidification, yet pH remains chronically undersampled along this coast, limiting our ability to assess the impacts of ocean acidification. To address this observational gap, we integrated the Deep-Sea-DuraFET, a solid-state pH sensor, onto a Spray underwater glider. Over the course of a year starting in April 2019, we conducted seven missions in central California that spanned 161 glider days and >1600 dives to a maximum depth of 1000 m. The sensor accuracy was estimated to be ± 0.01 based on comparisons to discrete samples taken alongside the glider (n = 105), and the precision was ±0.0016. CO2 partial pressure, dissolved inorganic carbon, and aragonite saturation state could be estimated from the pH data with uncertainty better than ± 2.5%, ± 8 μmol kg−1, and ± 2%, respectively. The sensor was stable to ±0.01 for the first 9 months but exhibited a drift of 0.015 during the last mission. The drift was correctable using a piecewise linear regression based on a reference pH field at 450 m estimated from published global empirical algorithms. These algorithms require accurate O2 as inputs; thus, protocols for a simple predeployment air calibration that achieved accuracy of better than 1% were implemented. The glider observations revealed upwelling of undersaturated waters with respect to aragonite to within 5 m below the surface near Monterey Bay. These observations highlight the importance of persistent observations through autonomous platforms in highly dynamic coastal environments.

Open access
Thomas Warner, Paul Benda, Scott Swerdlin, Jason Knievel, Edward Argenta, Bryan Aronian, Ben Balsley, James Bowers, Roger Carter, Pamela Clark, Kirk Clawson, Jeff Copeland, Andrew Crook, Rod Frehlich, Michael Jensen, Yubao Liu, Shane Mayor, Yannick Meillier, Bruce Morley, Robert Sharman, Scott Spuler, Donald Storwold, Juanzhen Sun, Jeffrey Weil, Mei Xu, AL Yates, and Ying Zhang

The Pentagon, and its 25,000+ occupants, represents a likely target for a future terrorist attack using chemical, biological, or radiological material released into the atmosphere. Motivated by this, a building-protection system, called Pentagon Shield, is being developed and deployed by a number of government, academic, and private organizations. The system consists of a variety of data-assimilation and forecast models that resolve processes from the mesoscale to the city scale to the building scale, and assimilate meteorological and contaminant data that are measured by remote and in situ sensors. This paper reports on a field program that took place in 2004 in the area of the Pentagon, where the aim was to provide meteorological data and concentration data from tracer releases, and to support the development and evaluation of the system. In particular, the results of the field program are being used to improve our understanding of urban meteorological processes, verify the overall effectiveness of the operational building protection system, and verify the skill of the component meteorological, and transport and dispersion, modeling systems. Based on the experience gained in this project, it will be more straightforward to develop similar systems to protect other high-profile facilities against the accidental or intentional release of hazardous material into the atmosphere.

Full access
Bruce Albrecht, Virendra Ghate, Johannes Mohrmann, Robert Wood, Paquita Zuidema, Christopher Bretherton, Christian Schwartz, Edwin Eloranta, Susanne Glienke, Shaunna Donaher, Mampi Sarkar, Jeremy McGibbon, Alison D. Nugent, Raymond A. Shaw, Jacob Fugal, Patrick Minnis, Robindra Paliknoda, Louis Lussier, Jorgen Jensen, J. Vivekanandan, Scott Ellis, Peisang Tsai, Robert Rilling, Julie Haggerty, Teresa Campos, Meghan Stell, Michael Reeves, Stuart Beaton, John Allison, Gregory Stossmeister, Samuel Hall, and Sebastian Schmidt

Abstract

The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science Foundation–National Center for Atmospheric Research (NSF–NCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud–precipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes.

Open access
Russell S. Vose, Scott Applequist, Mark A. Bourassa, Sara C. Pryor, Rebecca J. Barthelmie, Brian Blanton, Peter D. Bromirski, Harold E. Brooks, Arthur T. DeGaetano, Randall M. Dole, David R. Easterling, Robert E. Jensen, Thomas R. Karl, Richard W. Katz, Katherine Klink, Michael C. Kruk, Kenneth E. Kunkel, Michael C. MacCracken, Thomas C. Peterson, Karsten Shein, Bridget R. Thomas, John E. Walsh, Xiaolan L. Wang, Michael F. Wehner, Donald J. Wuebbles, and Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access
Britton B. Stephens, Matthew C. Long, Ralph F. Keeling, Eric A. Kort, Colm Sweeney, Eric C. Apel, Elliot L. Atlas, Stuart Beaton, Jonathan D. Bent, Nicola J. Blake, James F. Bresch, Joanna Casey, Bruce C. Daube, Minghui Diao, Ernesto Diaz, Heidi Dierssen, Valeria Donets, Bo-Cai Gao, Michelle Gierach, Robert Green, Justin Haag, Matthew Hayman, Alan J. Hills, Martín S. Hoecker-Martínez, Shawn B. Honomichl, Rebecca S. Hornbrook, Jorgen B. Jensen, Rong-Rong Li, Ian McCubbin, Kathryn McKain, Eric J. Morgan, Scott Nolte, Jordan G. Powers, Bryan Rainwater, Kaylan Randolph, Mike Reeves, Sue M. Schauffler, Katherine Smith, Mackenzie Smith, Jeff Stith, Gregory Stossmeister, Darin W. Toohey, and Andrew S. Watt

Abstract

The Southern Ocean plays a critical role in the global climate system by mediating atmosphere–ocean partitioning of heat and carbon dioxide. However, Earth system models are demonstrably deficient in the Southern Ocean, leading to large uncertainties in future air–sea CO2 flux projections under climate warming and incomplete interpretations of natural variability on interannual to geologic time scales. Here, we describe a recent aircraft observational campaign, the O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) study, which collected measurements over the Southern Ocean during January and February 2016. The primary research objective of the ORCAS campaign was to improve observational constraints on the seasonal exchange of atmospheric carbon dioxide and oxygen with the Southern Ocean. The campaign also included measurements of anthropogenic and marine biogenic reactive gases; high-resolution, hyperspectral ocean color imaging of the ocean surface; and microphysical data relevant for understanding and modeling cloud processes. In each of these components of the ORCAS project, the campaign has significantly expanded the amount of observational data available for this remote region. Ongoing research based on these observations will contribute to advancing our understanding of this climatically important system across a range of topics including carbon cycling, atmospheric chemistry and transport, and cloud physics. This article presents an overview of the scientific and methodological aspects of the ORCAS project and highlights early findings.

Open access