Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sebastian Lerch x
  • All content x
Clear All Modify Search
Stephan Rasp and Sebastian Lerch

Abstract

Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in which the parameters of a predictive distribution are estimated from a training period. We propose a flexible alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor variables and forecast distribution parameters that are automatically learned in a data-driven way rather than requiring prespecified link functions. In a case study of 2-m temperature forecasts at surface stations in Germany, the neural network approach significantly outperforms benchmark postprocessing methods while being computationally more affordable. Key components to this improvement are the use of auxiliary predictor variables and station-specific information with the help of embeddings. Furthermore, the trained neural network can be used to gain insight into the importance of meteorological variables, thereby challenging the notion of neural networks as uninterpretable black boxes. Our approach can easily be extended to other statistical postprocessing and forecasting problems. We anticipate that recent advances in deep learning combined with the ever-increasing amounts of model and observation data will transform the postprocessing of numerical weather forecasts in the coming decade.

Open access
Joël Arnault, Thomas Rummler, Florian Baur, Sebastian Lerch, Sven Wagner, Benjamin Fersch, Zhenyu Zhang, Noah Kerandi, Christian Keil, and Harald Kunstmann

Abstract

Precipitation is affected by soil moisture spatial variability. However, this variability is not well represented in atmospheric models that do not consider soil moisture transport as a three-dimensional process. This study investigates the sensitivity of precipitation to the uncertainty in the representation of terrestrial water flow. The tools used for this investigation are the Weather Research and Forecasting (WRF) Model and its hydrologically enhanced version, WRF-Hydro, applied over central Europe during April–October 2008. The model grid is convection permitting, with a horizontal spacing of 2.8 km. The WRF-Hydro subgrid employs a 280-m resolution to resolve lateral terrestrial water flow. A WRF/WRF-Hydro ensemble is constructed by modifying the parameter controlling the partitioning between surface runoff and infiltration and by varying the planetary boundary layer (PBL) scheme. This ensemble represents terrestrial water flow uncertainty originating from the consideration of resolved lateral flow, terrestrial water flow uncertainty in the vertical direction, and turbulence parameterization uncertainty. The uncertainty of terrestrial water flow noticeably increases the normalized ensemble spread of daily precipitation where topography is moderate, surface flux spatial variability is high, and the weather regime is dominated by local processes. The adjusted continuous ranked probability score shows that the PBL uncertainty improves the skill of an ensemble subset in reproducing daily precipitation from the E-OBS observational product by 16%–20%. In comparison to WRF, WRF-Hydro improves this skill by 0.4%–0.7%. The reproduction of observed daily discharge with Nash–Sutcliffe model efficiency coefficients generally above 0.3 demonstrates the potential of WRF-Hydro in hydrological science.

Full access
Stéphane Vannitsem, John Bjørnar Bremnes, Jonathan Demaeyer, Gavin R. Evans, Jonathan Flowerdew, Stephan Hemri, Sebastian Lerch, Nigel Roberts, Susanne Theis, Aitor Atencia, Zied Ben Bouallègue, Jonas Bhend, Markus Dabernig, Lesley De Cruz, Leila Hieta, Olivier Mestre, Lionel Moret, Iris Odak Plenković, Maurice Schmeits, Maxime Taillardat, Joris Van den Bergh, Bert Van Schaeybroeck, Kirien Whan, and Jussi Ylhaisi

Capsule

State-of-the-Art statistical postprocessing techniques for ensemble forecasts are reviewed, together with the challenges posed by a demand for timely, high-resolution and reliable probabilistic information. Possible research avenues are also discussed.

Full access