Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Sebastien Masson x
  • Refine by Access: All Content x
Clear All Modify Search
Mathew Koll Roxy, Kapoor Ritika, Pascal Terray, and Sébastien Masson

Abstract

Recent studies have pointed out an increased warming over the Indian Ocean warm pool (the central-eastern Indian Ocean characterized by sea surface temperatures greater than 28.0°C) during the past half-century, although the reasons behind this monotonous warming are still debated. The results here reveal a larger picture—namely, that the western tropical Indian Ocean has been warming for more than a century, at a rate faster than any other region of the tropical oceans, and turns out to be the largest contributor to the overall trend in the global mean sea surface temperature (SST). During 1901–2012, while the Indian Ocean warm pool went through an increase of 0.7°C, the western Indian Ocean experienced anomalous warming of 1.2°C in summer SSTs. The warming of the generally cool western Indian Ocean against the rest of the tropical warm pool region alters the zonal SST gradients, and has the potential to change the Asian monsoon circulation and rainfall, as well as alter the marine food webs in this biologically productive region. The current study using observations and global coupled ocean–atmosphere model simulations gives compelling evidence that, besides direct contribution from greenhouse warming, the long-term warming trend over the western Indian Ocean during summer is highly dependent on the asymmetry in the El Niño–Southern Oscillation (ENSO) teleconnection, and the positive SST skewness associated with ENSO during recent decades.

Full access
Jing-Jia Luo, Sebastien Masson, Swadhin Behera, and Toshio Yamagata

Abstract

The Indian Ocean Dipole (IOD) has profound socioeconomic impacts on not only the countries surrounding the Indian Ocean but also various parts of the world. A forecast system is developed based on a relatively high-resolution coupled ocean–atmosphere GCM with only sea surface temperature (SST) information assimilated. Retrospective ensemble forecasts of the IOD index for the past two decades show skillful scores with up to a 3–4-month lead and a winter prediction barrier associated with its intrinsic strong seasonal phase locking. Prediction skills of the SST anomalies in both the eastern and western Indian Ocean are higher than those of the IOD index; this is because of the influences of ENSO, which is highly predictable. The model predicts the extreme positive IOD event in 1994 at a 2–3-season lead. The strong 1997 cold signal in the eastern pole, however, is not well predicted owing to errors in model initial subsurface conditions. The real-time forecast system with more ensembles successfully predicted the weak negative IOD event in the 2005 boreal fall and La Niña condition in the 2005/06 winter. Recent experimental real-time forecasts showed that a positive IOD event would appear in the 2006 summer and fall accompanied by a possible weak El Niño condition in the equatorial Pacific.

Full access
Tomoki Tozuka, Jing-Jia Luo, Sebastien Masson, and Toshio Yamagata

Abstract

The decadal variation in the tropical Indian Ocean is investigated using outputs from a 200-yr integration of the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) ocean–atmosphere coupled model. The first EOF mode of the decadal bandpass- (9–35 yr) filtered sea surface temperature anomaly (SSTA) represents a basinwide mode and is closely related with the Pacific ENSO-like decadal variability. The second EOF mode shows a clear east–west SSTA dipole pattern similar to that of the interannual Indian Ocean dipole (IOD) and may be termed the decadal IOD. However, it is demonstrated that the decadal air–sea interaction in the Tropics can be a statistical artifact; it should be interpreted more correctly as decadal modulation of interannual IOD events (i.e., asymmetric or skewed occurrence of positive and negative events). Heat budget analysis has revealed that the occurrence of IOD events is governed by variations in the southward Ekman heat transport across 15°S and variations in the Indonesian Throughflow associated with the ENSO. The variations in the southward Ekman heat transport are related to the Mascarene high activities.

Full access
Jing-Jia Luo, Sebastien Masson, Swadhin K. Behera, and Toshio Yamagata

Abstract

Using a fully coupled global ocean–atmosphere general circulation model assimilating only sea surface temperature, the authors found for the first time that several El Niño–Southern Oscillation (ENSO) events over the past two decades can be predicted at lead times of up to 2 yr. The El Niño condition in the 1997/98 winter can be predicted to some extent up to about a 1½-yr lead but with a weak intensity and large phase delay in the prediction of the onset of this exceptionally strong event. This is attributed to the influence of active and intensive stochastic westerly wind bursts during late 1996 to mid-1997, which are generally unpredictable at seasonal time scales. The cold signals in the 1984/85 and 1999/2000 winters during the peak phases of the past two long-lasting La Niña events are predicted well up to a 2-yr lead. Amazingly, the mild El Niño–like event of 2002/03 is also predicted well up to a 2-yr lead, suggesting a link between the prolonged El Niño and the tropical Pacific decadal variability. Seasonal climate anomalies over vast parts of the globe during specific ENSO years are also realistically predicted up to a 2-yr lead for the first time.

Full access
Tomoki Tozuka, Jing-Jia Luo, Sebastien Masson, and Toshio Yamagata

Abstract

Using outputs from the SINTEX-F1 coupled GCM, the thermodynamics of ENSO events and its relation with the seasonal cycle are investigated. Simulated El Niño events are first classified into four groups depending on during which season the Niño-3.4 sea surface temperature anomaly (SSTA) index (5°S–5°N, 120°–170°W) reaches its peak. Although the heat content of the tropical Pacific decreases for all four types, the tropical Pacific loses about twice as much during an El Niño that peaks during winter compared with one that peaks during summer. The surface heat flux, the southward heat transport at 15°S, and the Indonesian Throughflow heat transport contribute constructively to this remarkable seasonal difference. It is shown that the Indonesian Throughflow supplies anomalous heat from the Indian Ocean, especially during the summer El Niño–like event. Changes in the basic state provided by the seasonal cycle cause differences in the atmospheric response to the SSTA, which in turn lead to the difference between the surface heat flux and the meridional heat transport anomaly.

Full access
Yushi Morioka, Tomoki Tozuka, Sebastien Masson, Pascal Terray, Jing-Jia Luo, and Toshio Yamagata

Abstract

The growth and decay mechanisms of subtropical dipole modes in the southern Indian and South Atlantic Oceans and their impacts on southern African rainfall are investigated using results from a coupled general circulation model originally developed for predicting tropical climate variations. The second (most) dominant mode of interannual sea surface temperature (SST) variations in the southern Indian (South Atlantic) Ocean represents a northeast–southwest oriented dipole, now called subtropical dipole mode. The positive (negative) SST interannual anomaly pole starts to grow in austral spring and reaches its peak in February. In austral late spring, the suppressed (enhanced) latent heat flux loss associated with the variations in the subtropical high causes a thinner (thicker) than normal mixed layer thickness that, in turn, enhances (reduces) the warming of the mixed layer by the climatological shortwave radiation. The positive (negative) pole gradually decays in austral fall because the mixed layer cooling by the entrainment is enhanced (reduced), mostly owing to the larger (smaller) temperature difference between the mixed layer and the entrained water. The increased (decreased) latent heat loss due to the warmer (colder) SST also contributes to the decay of the positive (negative) pole. Although further verification using longer observational data is required, the present coupled model suggests that the South Atlantic subtropical dipole may play a more important role in rainfall variations over the southern African region than the Indian Ocean subtropical dipole.

Full access
Swadhin K. Behera, Jing Jia Luo, Sebastien Masson, Suryachandra A. Rao, Hirofumi Sakuma, and Toshio Yamagata

Abstract

An atmosphere–ocean coupled general circulation model known as the Scale Interaction Experiment Frontier version 1 (SINTEX-F1) model is used to understand the intrinsic variability of the Indian Ocean dipole (IOD). In addition to a globally coupled control experiment, a Pacific decoupled noENSO experiment has been conducted. In the latter, the El Niño–Southern Oscillation (ENSO) variability is suppressed by decoupling the tropical Pacific Ocean from the atmosphere. The ocean–atmosphere conditions related to the IOD are realistically simulated by both experiments including the characteristic east–west dipole in SST anomalies. This demonstrates that the dipole mode in the Indian Ocean is mainly determined by intrinsic processes within the basin. In the EOF analysis of SST anomalies from the noENSO experiment, the IOD takes the dominant seat instead of the basinwide monopole mode. Even the coupled feedback among anomalies of upper-ocean heat content, SST, wind, and Walker circulation over the Indian Ocean is reproduced.

As in the observation, IOD peaks in boreal fall for both model experiments. In the absence of ENSO variability the interannual IOD variability is dominantly biennial. The ENSO variability is found to affect the periodicity, strength, and formation processes of the IOD in years of co-occurrences. The amplitudes of SST anomalies in the western pole of co-occurring IODs are aided by dynamical and thermodynamical modifications related to the ENSO-induced wind variability. Anomalous latent heat flux and vertical heat convergence associated with the modified Walker circulation contribute to the alteration of western anomalies. It is found that 42% of IOD events affected by changes in the Walker circulation are related to the tropical Pacific variabilities including ENSO. The formation is delayed until boreal summer for those IODs, which otherwise form in boreal spring as in the noENSO experiment.

Full access
Jing-Jia Luo, Sebastien Masson, Erich Roeckner, Gurvan Madec, and Toshio Yamagata

Abstract

The cold tongue in the tropical Pacific extends too far west in most current ocean–atmosphere coupled GCMs (CGCMs). This bias also exists in the relatively high-resolution SINTEX-F CGCM despite its remarkable performance of simulating ENSO variations. In terms of the importance of air–sea interactions to the climatology formation in the tropical Pacific, several sensitivity experiments with improved coupling physics have been performed in order to reduce the cold-tongue bias in CGCMs.

By allowing for momentum transfer of the ocean surface current to the atmosphere [full coupled simulation (FCPL)] or merely reducing the wind stress by taking the surface current into account in the bulk formula [semicoupled simulation (semi-CPL)], the warm-pool/cold-tongue structure in the equatorial Pacific is simulated better than that of the control simulation (CTL) in which the movement of the ocean surface is ignored for wind stress calculation. The reduced surface zonal current and vertical entrainment owing to the reduced easterly wind stress tend to produce a warmer sea surface temperature (SST) in the western equatorial Pacific. Consequently, the dry bias there is much reduced. The warming tendency of the SST in the eastern Pacific, however, is largely suppressed by isopycnal diffusion and meridional advection of colder SST from south of the equator due to enhanced coastal upwelling near Peru. The ENSO signal in the western Pacific and its global teleconnection in the North Pacific are simulated more realistically.

The approach as adopted in the FCPL run is able to generate a correct zonal SST slope and efficiently reduce the cold-tongue bias in the equatorial Pacific. The surface easterly wind itself in the FCPL run is weakened, reducing the easterly wind stress further. This is related with a weakened zonal Walker cell in the atmospheric boundary layer over the eastern Pacific and a new global angular momentum balance of the atmosphere associated with reduced westerly wind stress over the southern oceans.

Full access
Lionel Renault, M. Jeroen Molemaker, Jonathan Gula, Sebastien Masson, and James C. McWilliams

Abstract

The Gulf Stream (GS) is known to have a strong influence on climate, for example, by transporting heat from the tropics to higher latitudes. Although the GS transport intensity presents a clear interannual variability, satellite observations reveal its mean path is stable. Numerical models can simulate some characteristics of the mean GS path, but persistent biases keep the GS separation and postseparation unstable and therefore unrealistic. This study investigates how the integration of ocean surface currents into the ocean–atmosphere coupling interface of numerical models impacts the GS. The authors show for the first time that the current feedback, through its eddy killing effect, stabilizes the GS separation and postseparation, resolving long-lasting biases in modeled GS path, at least for the Regional Oceanic Modeling System (ROMS). This key process should therefore be taken into account in oceanic numerical models. Using a set of oceanic and atmospheric coupled and uncoupled simulations, this study shows that the current feedback, by modulating the energy transfer from the atmosphere to the ocean, has two main effects on the ocean. On one hand, by reducing the mean surface stress and thus weakening the mean geostrophic wind work by 30%, the current feedback slows down the whole North Atlantic oceanic gyre, making the GS narrower and its transport weaker. Yet, on the other hand, the current feedback acts as an oceanic eddy killer, reducing the surface eddy kinetic energy by 27%. By inducing a surface stress curl opposite to the current vorticity, it deflects energy from the geostrophic current into the atmosphere and dampens eddies.

Full access
Suryachandra A. Rao, Sebastien Masson, Jing-Jia Luo, Swadhin K. Behera, and Toshio Yamagata

Abstract

Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations.

A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.

Full access