Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Shigenori Murakami x
  • Refine by Access: All Content x
Clear All Modify Search
Shigenori Murakami

Abstract

A new diagnostic scheme for the atmospheric local energetics is proposed. In contrast to conventional schemes, this scheme correctly represents the local features of the Lorenz energy cycle for time-mean and transient-eddy fields. The key point is that the energy equation is divided not into two but into three parts consisting of the mean, eddy, and interaction energy equations, when basic variables are divided into mean and eddy fields. The interaction energy itself vanishes when appropriate averaging is taken. However, the equation for interaction energy does not vanish and gives a relationship between the interaction energy flux and the two types of energy conversion terms. These three quantities give the complete information for the energy interactions between mean and eddy fields. The Lorenz energy diagram is reconstructed to include a representation of this relationship. A brief discussion about the relationship with wave activity analysis is also given.

Full access
Akio Kitoh, Tatsuo Motoi, and Shigenori Murakami

Abstract

Modulation of El Niño–Southern Oscillation at the mid-Holocene [6000 yr before present (6 ka)] is investigated with a coupled ocean–atmosphere general circulation model. The model is integrated for 300 yr with 6-ka and present (0 ka) insolation both with and without flux adjustment, and the effect of flux adjustment on the simulation of El Niño is investigated. The response in the equatorial Pacific Ocean in 6 ka is in favor of weaker El Niño variability resulting from lowered sea surface temperature (SST) and a more diffuse thermocline. Atmospheric sensitivity in 6 ka is larger than that in 0 ka because of increased trade winds, while oceanic sensitivity in 6 ka is weaker than that in 0 ka, resulting from destabilization of the upper ocean, both in the flux- and non-flux-adjusted experiments. However, the use of flux adjustment causes a difference in the total response. El Niño variability in 6 ka does not change much from that in 0 ka with the flux-adjusted case, while the 6-ka El Niño variability is weaker without flux adjustment. Because the observed proxy data suggest weaker El Niño variability in the mid-Holocene, the non-flux-adjusted version gives a more reasonable response despite a larger bias in its basic states, implying that nondistortion of sensitivity to forcing is more important.

Full access
Shigenori Murakami, Rumi Ohgaito, and Ayako Abe-Ouchi

Abstract

The atmospheric local energy cycle in the Last Glacial Maximum (LGM) climate simulated by an atmosphere–ocean GCM (AOGCM) is investigated using a new diagnostic scheme. In contrast to existing ones, this scheme can represent the local features of the Lorenz energy cycle correctly, and it provides the complete information about the three-dimensional structure of the energy interactions between mean and eddy fields. The diagnosis reveals a significant enhancement of the energy interactions through the barotropic processes in the Atlantic sector at the LGM. Energy interactions through the baroclinic processes are also enhanced in the Atlantic sector, although those in the Pacific sector are rather weakened. These LGM responses, however, are not evident in the global energy cycle except for an enhancement of the energy flow through the stationary eddies.

Full access
Shigenori Murakami, Rumi Ohgaito, Ayako Abe-Ouchi, Michel Crucifix, and Bette L. Otto-Bliesner

Abstract

Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.

Full access