Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sho Kawazoe x
  • All content x
Clear All Modify Search
Sho Kawazoe and William J. Gutowski Jr.

Abstract

The authors analyze the ability of global climate models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel ensemble to simulate very heavy daily precipitation and its supporting processes, comparing them with observations. Their analysis focuses on an upper Mississippi region for winter (December–February), when it is assumed that resolved synoptic circulation governs precipitation. CMIP5 GCMs generally reproduce well the precipitation versus intensity spectrum seen in observations to intensities as strong as 20 mm day−1. Most models do not produce the highest precipitation intensities seen in observations. Models show good agreement at the 95th percentile, while the coarsest resolution models generally show lower precipitation at high-intensity thresholds, such as the 99.5th percentile. There is no dominant month for simulated very heavy events to occur, although observed very heavy events occur most frequently in December. Further analysis focuses on precipitation events exceeding the 99.5th percentile that occur simultaneously at several points in the region, yielding so-called “widespread events.” Examination of additional fields during widespread very heavy events shows that the models produce these events under the same physical conditions seen in the observations. The coarsest models generally produce similar behavior, although features have smoother spatial distributions. However, the resolution in itself could not be identified as a major reason that separates one model from another. The capabilities of the CMIP5 GCMs examined here support using them to assess changes in very heavy precipitation under future climate scenarios.

Restricted access
Sho Kawazoe and William J. Gutowski Jr.

Abstract

The authors analyze the ability of the North American Regional Climate Change Assessment Program's ensemble of climate models to simulate very heavy daily precipitation and its supporting processes, comparing simulations that used observation-based boundary conditions with observations. The analysis includes regional climate models and a time-slice global climate model that all used approximately half-degree resolution. Analysis focuses on an upper Mississippi River region for winter (December–February), when it is assumed that resolved synoptic circulation governs precipitation. All models generally reproduce the precipitation-versus-intensity spectrum seen in observations well, with a small tendency toward producing overly strong precipitation at high-intensity thresholds, such as the 95th, 99th, and 99.5th percentiles. Further analysis focuses on precipitation events exceeding the 99.5th percentile that occur simultaneously at several points in the region, yielding so-called “widespread events.” Examination of additional fields shows that the models produce very heavy precipitation events for the same physical conditions seen in the observations.

Restricted access
William J. Gutowski Jr., Raymond W. Arritt, Sho Kawazoe, David M. Flory, Eugene S. Takle, Sébastien Biner, Daniel Caya, Richard G. Jones, René Laprise, L. Ruby Leung, Linda O. Mearns, Wilfran Moufouma-Okia, Ana M. B. Nunes, Yun Qian, John O. Roads, Lisa C. Sloan, and Mark A. Snyder

Abstract

This paper analyzes the ability of the North American Regional Climate Change Assessment Program (NARCCAP) ensemble of regional climate models to simulate extreme monthly precipitation and its supporting circulation for regions of North America, comparing 18 years of simulations driven by the National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis with observations. The analysis focuses on the wettest 10% of months during the cold half of the year (October–March), when it is assumed that resolved synoptic circulation governs precipitation. For a coastal California region where the precipitation is largely topographic, the models individually and collectively replicate well the monthly frequency of extremes, the amount of extreme precipitation, and the 500-hPa circulation anomaly associated with the extremes. The models also replicate very well the statistics of the interannual variability of occurrences of extremes. For an interior region containing the upper Mississippi River basin, where precipitation is more dependent on internally generated storms, the models agree with observations in both monthly frequency and magnitude, although not as closely as for coastal California. In addition, simulated circulation anomalies for extreme months are similar to those in observations. Each region has important seasonally varying precipitation processes that govern the occurrence of extremes in the observations, and the models appear to replicate well those variations.

Full access