Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Shuaiqi Tang x
  • Refine by Access: All Content x
Clear All Modify Search
Yunyan Zhang, Stephen A. Klein, Jiwen Fan, Arunchandra S. Chandra, Pavlos Kollias, Shaocheng Xie, and Shuaiqi Tang


Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation.

The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.

Full access
Shuaiqi Tang, Peter Gleckler, Shaocheng Xie, Jiwoo Lee, Min-Seop Ahn, Curt Covey, and Chengzhu Zhang


The diurnal and semidiurnal cycle of precipitation simulated from CMIP6 models during 1996–2005 are evaluated globally between 60°S and 60°N as well as at 10 selected locations representing three categories of diurnal cycle of precipitation: 1) afternoon precipitation over land, 2) early morning precipitation over ocean, and 3) nocturnal precipitation over land. Three satellite-based and two ground-based rainfall products are used to evaluate the climate models. Globally, the ensemble mean of CMIP6 models shows a diurnal phase of 3 to 4 h earlier over land and 1 to 2 h earlier over ocean when compared with the latest satellite products. These biases are in line with what were found in previous versions of climate models but reduced compared to the CMIP5 ensemble mean. Analysis at the selected locations complemented with in situ measurements further reinforces these results. Several CMIP6 models have shown a significant improvement in the diurnal cycle of precipitation compared to their CMIP5 counterparts, notably in delaying afternoon precipitation over land. This can be attributed to the use of more sophisticated convective parameterizations. Most models are still unable to capture the nocturnal peak associated with elevated convection and propagating mesoscale convective systems, with a few exceptions that allow convection to be initiated above the boundary layer to capture nocturnal elevated convection. We also quantify an encouraging consistency between the satellite- and ground-based precipitation measurements despite differing spatiotemporal resolutions and sampling periods, which provides confidence in using them to evaluate the diurnal and semidiurnal cycle of precipitation in climate models.

Full access
Cheng Tao, Yunyan Zhang, Qi Tang, Hsi-Yen Ma, Virendra P. Ghate, Shuaiqi Tang, Shaocheng Xie, and Joseph A. Santanello


Using the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land–atmosphere (LA) coupling in the North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the local coupling metrics. NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local LA coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases toward mid-to-late summers, which may be an amplification through a positive LA feedback among initial atmosphere and land states, convection triggering and large-scale circulations.

Full access
Yuying Zhang, Shaocheng Xie, Stephen A. Klein, Roger Marchand, Pavlos Kollias, Eugene E. Clothiaux, Wuyin Lin, Karen Johnson, Dustin Swales, Alejandro Bodas-Salcedo, Shuaiqi Tang, John M. Haynes, Scott Collis, Michael Jensen, Nitin Bharadwaj, Joseph Hardin, and Bradley Isom
Open access