Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sijie Pan x
  • All content x
Clear All Modify Search
Sijie Pan, Jidong Gao, David J. Stensrud, Xuguang Wang, and Thomas A. Jones

Abstract

In this study, the ensemble of three-dimensional variational data assimilation (En3DVar) method for convective-scale weather is adopted and evaluated using an idealized supercell storm simulated by the Weather Research and Forecasting (WRF) Model. Synthetic radar radial velocity, reflectivity, satellite-derived cloud water path (CWP), and total precipitable water (TPW) data are produced from the simulated supercell storm and then these data are assimilated into another WRF Model run that starts with no convection. Two types of experiments are performed. The first assimilates radar and satellite CWP data using a perfect storm environment. The second assimilates additional TPW data using a storm environment with dry bias. The first set of experiments indicates that incorporating CWP and radar data into the assimilation leads to a much faster initiation of supercell storms than found using radar data alone. Assimilating CWP data primarily improves the analyses of nonprecipitating hydrometeor variables. The results from the second set of experiments demonstrate the critical importance of the storm environment. When using the biased storm environment, assimilation of CWP and radar data enhances the analyses, but the forecast skill rapidly decreases over the subsequent 1-h forecast. Further experiments show that assimilating the TPW data has a large impact on storm environment that is essential to the accuracy of the storm forecasts. In general, the combination of radar data and satellite data within the En3DVar results in better analyses and forecasts than when only radar data are used, especially for an imperfect storm environment.

Full access
Anwei Lai, Jidong Gao, Steven E. Koch, Yunheng Wang, Sijie Pan, Alexandre O. Fierro, Chunguang Cui, and Jinzhong Min

Abstract

To improve severe thunderstorm prediction, a novel pseudo-observation and assimilation approach involving water vapor mass mixing ratio is proposed to better initialize NWP forecasts at convection-resolving scales. The first step of the algorithm identifies areas of deep moist convection by utilizing the vertically integrated liquid water (VIL) derived from three-dimensional radar reflectivity fields. Once VIL is obtained, pseudo–water vapor observations are derived based on reflectivity thresholds within columns characterized by deep moist convection. Areas of spurious convection also are identified by the algorithm to help reduce their detrimental impact on the forecast. The third step is to assimilate the derived pseudo–water vapor observations into a convection-resolving-scale NWP model along with radar radial velocity and reflectivity fields in a 3DVAR framework during 4-h data assimilation cycles. Finally, 3-h forecasts are launched every hour during that period. The performance of this method is examined for two selected high-impact severe thunderstorm events: namely, the 24 May 2011 Oklahoma and 16 May 2017 Texas and Oklahoma tornado outbreaks. Relative to a control simulation that only assimilated radar data, the analyses and forecasts of these supercells (reflectivity patterns, tracks, and updraft helicity tracks) are qualitatively and quantitatively improved in both cases when the water vapor information is added into the analysis.

Full access