Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Simon Pellerin x
  • Refine by Access: All Content x
Clear All Modify Search
Robert Benoit, Michel Desgagné, Pierre Pellerin, Simon Pellerin, Yves Chartier, and Serge Desjardins

Abstract

This paper attempts to document the developmental research and early mesoscale results of the new fully nonhydrostatic atmospheric model called MC2 (mesoscale compressible community). Its numerical scheme is the semi-implicit semi-Lagrangian approach conceived and demonstrated by Tanguay, Robert, and Laprise. The dominant effort required to become a full-fledged mesoscale model was to connect it properly to a full-scale and evolving physics package; the enlarged scope of a package previously dedicated to hydrostatic pressure coordinate-type models posed some new questions. The one-way nesting is reviewed and particularly the self-nesting or cascade mode; the potential implication of this mode is explored with a stand-alone forecast experiment and related to the other existing approach employing hemispheric or global variable meshes. One of the strong assets of MC2 is its growing community of users and developers. To demonstrate the wideband characteristic of MC2, that is, its applicability to a large range of atmospheric flows, two very different cases are studied: an Atlantic winter East Coast cyclogenesis (meso-α scale, mostly hydrostatic) and a local (meso-γ scale, partly nonhydrostatic) downslope windstorm occuring over unexpectedly modest topography (Cape Breton Highlands of Nova Scotia, Canada).

Full access
Stéphane Laroche, Pierre Gauthier, Monique Tanguay, Simon Pellerin, and Josée Morneau

Abstract

A four-dimensional variational data assimilation (4DVAR) scheme has recently been implemented in the medium-range weather forecast system of the Meteorological Service of Canada (MSC). The new scheme is now composed of several additional and improved features as compared with the three-dimensional variational data assimilation (3DVAR): the first guess at the appropriate time from the full-resolution model trajectory is used to calculate the misfit to the observations; the tangent linear of the forecast model and its adjoint are employed to propagate the analysis increment and the gradient of the cost function over the 6-h assimilation window; a comprehensive set of simplified physical parameterizations is used during the final minimization process; and the number of frequently reported data, in particular satellite data, has substantially increased. The impact of these 4DVAR components on the forecast skill is reported in this article. This is achieved by comparing data assimilation configurations that range in complexity from the former 3DVAR with the implemented 4DVAR over a 1-month period. It is shown that the implementation of the tangent-linear model and its adjoint as well as the increased number of observations are the two features of the new 4DVAR that contribute the most to the forecast improvement. All the other components provide marginal though positive impact. 4DVAR does not improve the medium-range forecast of tropical storms in general and tends to amplify the existing, too early extratropical transition often observed in the MSC global forecast system with 3DVAR. It is shown that this recurrent problem is, however, more sensitive to the forecast model than the data assimilation scheme employed in this system. Finally, the impact of using a shorter cutoff time for the reception of observations, as the one used in the operational context for the 0000 and 1200 UTC forecasts, is more detrimental with 4DVAR. This result indicates that 4DVAR is more sensitive to observations at the end of the assimilation window than 3DVAR.

Full access
Pierre Gauthier, Monique Tanguay, Stéphane Laroche, Simon Pellerin, and Josée Morneau

Abstract

On 15 March 2005, the Meteorological Service of Canada (MSC) proceeded to the implementation of a four-dimensional variational data assimilation (4DVAR) system, which led to significant improvements in the quality of global forecasts. This paper describes the different elements of MSC’s 4DVAR assimilation system, discusses some issues encountered during the development, and reports on the overall results from the 4DVAR implementation tests. The 4DVAR system adopted an incremental approach with two outer iterations. The simplified model used in the minimization has a horizontal resolution of 170 km and its simplified physics includes vertical diffusion, surface drag, orographic blocking, stratiform condensation, and convection. One important element of the design is its modularity, which has permitted continued progress on the three-dimensional variational data assimilation (3DVAR) component (e.g., addition of new observation types) and the model (e.g., computational and numerical changes). This paper discusses some numerical problems that occur in the vicinity of the Poles where the semi-Lagrangian scheme becomes unstable when there is a simultaneous occurrence of converging meridians and strong wind gradients. These could be removed by filtering the winds in the zonal direction before they are used to estimate the upstream position in the semi-Lagrangian scheme. The results show improvements in all aspects of the forecasts over all regions. The impact is particularly significant in the Southern Hemisphere where 4DVAR is able to extract more information from satellite data. In the Northern Hemisphere, 4DVAR accepts more asynoptic data, in particular coming from profilers and aircrafts. The impact noted is also positive and the short-term forecasts are particularly improved over the west coast of North America. Finally, the dynamical consistency of the 4DVAR global analyses leads to a significant impact on regional forecasts. Experimentation has shown that regional forecasts initiated directly from a 4DVAR global analysis are improved with respect to the regional forecasts resulting from the regional 3DVAR analysis.

Full access
Ronald Gelaro, Rolf H. Langland, Simon Pellerin, and Ricardo Todling

Abstract

An experiment is being conducted to directly compare the impact of all assimilated observations on short-range forecast errors in different forecast systems using an adjoint-based technique. The technique allows detailed comparison of observation impacts in terms of data type, location, satellite sounding channel, or other relevant attributes. This paper describes results for a “baseline” set of observations assimilated by three forecast systems for the month of January 2007. Despite differences in the assimilation algorithms and forecast models, the impacts of the major observation types are similar in each forecast system in a global sense. However, regional details and other aspects of the results can differ substantially. Large forecast error reductions are provided by satellite radiances, geostationary satellite winds, radiosondes, and commercial aircraft. Other observation types provide smaller impacts individually, but their combined impact is significant. Only a small majority of the total number of observations assimilated actually improves the forecast, and most of the improvement comes from a large number of observations that have relatively small individual impacts. Accounting for this behavior may be especially important when considering strategies for deploying adaptive (or “targeted”) components of the observing system.

Full access
Martin Charron, Saroja Polavarapu, Mark Buehner, P. A. Vaillancourt, Cécilien Charette, Michel Roch, Josée Morneau, Louis Garand, Josep M. Aparicio, Stephen MacPherson, Simon Pellerin, Judy St-James, and Sylvain Heilliette

Abstract

A new system that resolves the stratosphere was implemented for operational medium-range weather forecasts at the Canadian Meteorological Centre. The model lid was raised from 10 to 0.1 hPa, parameterization schemes for nonorographic gravity wave tendencies and methane oxidation were introduced, and a new radiation scheme was implemented. Because of the higher lid height of 0.1 hPa, new measurements between 10 and 0.1 hPa were also added. This new high-top system resulted not only in dramatically improved forecasts of the stratosphere, but also in large improvements in medium-range tropospheric forecast skill. Pairs of assimilation experiments reveal that most of the stratospheric and tropospheric forecast improvement is obtained without the extra observations in the upper stratosphere. However, these observations further improve forecasts in the winter hemisphere but not in the summer hemisphere. Pairs of forecast experiments were run in which initial conditions were the same for each experiment but the forecast model differed. The large improvements in stratospheric forecast skill are found to be due to the higher lid height of the new model. The new radiation scheme helps to improve tropospheric forecasts. However, the degree of improvement seen in tropospheric forecast skill could not be entirely explained with these purely forecast experiments. It is hypothesized that the cycling of a better model and assimilation provide improved initial conditions, which result in improved forecasts.

Full access