Search Results

You are looking at 1 - 10 of 51 items for

  • Author or Editor: Song-You Hong x
  • Refine by Access: All Content x
Clear All Modify Search
Song-You Hong
and
Hua-Lu Pan

Abstract

In this paper, the incorporation of a simple atmospheric boundary layer diffusion scheme into the NCEP Medium-Range Forecast Model is described. A boundary layer diffusion package based on the Troen and Mahrt nonlocal diffusion concept has been tested for possible operational implementation. The results from this approach are compared with those from the local diffusion approach, which is the current operational scheme, and verified against FIFE observations during 9–10 August 1987. The comparisons between local and nonlocal approaches are extended to the forecast for a heavy rain case of 15–17 May 1995. The sensitivity of both the boundary layer development and the precipitation forecast to the tuning parameters in the nonlocal diffusion scheme is also investigated. Special attention is given to the interaction of boundary layer processes with precipitation physics. Some results of parallel runs during August 1995 are also presented.

Full access
Young-Hwa Byun
and
Song-You Hong

Abstract

This study describes a revised approach for the subgrid-scale convective properties of a moist convection scheme in a global model and evaluates its effects on a simulated model climate. The subgrid-scale convective processes tested in this study comprise three components: 1) the random selection of cloud top, 2) the inclusion of convective momentum transport, and 3) a revised large-scale destabilization effect considering synoptic-scale forcing in the cumulus convection scheme of the National Centers for Environmental Prediction medium-range forecast model. Each component in the scheme has been evaluated within a single-column model (SCM) framework forced by the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment data. The impact of the changes in the scheme on seasonal predictions has been examined for the boreal summers of 1996, 1997, and 1999. In the SCM simulations, an experiment that includes all the modifications reproduces the typical convective heating and drying feature. The simulated surface rainfall is in good agreement with the observed precipitation. Random selection of the cloud top effectively moistens and cools the upper troposphere, and it induces drying and warming below the cloud-top level due to the cloud–radiation feedback. However, the two other components in the revised scheme do not play a significant role in the SCM simulations. On the other hand, the role of each modification component in the scheme is significant in the ensemble seasonal simulations. The random selection process of the cloud top preferentially plays an important role in the adjustment of the thermodynamic profile in a manner similar to that in the SCM framework. The inclusion of convective momentum transport in the scheme weakens the meridional circulation. The revised large-scale destabilization process plays an important role in the modulation of the meridional circulation when this process is combined with other processes; on the other hand, this process does not induce significant changes in large-scale fields by itself. Consequently, the experiment that involves all the modifications shows a significant improvement in the seasonal precipitation, thereby highlighting the importance of nonlinear interaction between the physical processes in the model and the simulated climate.

Full access
Song-You Hong
and
Hua-Lu Pan

Abstract

A precipitation physics package for the National Centers for Environmental Prediction Regional Spectral Model designed to improve the skill of precipitation forecasts is proposed. The package incorporates a prognostic grid-resolvable precipitation scheme and a parameterized convection scheme with a convective trigger function that explicitly couples boundary layer and convective precipitation processes. Comprehensive sensitivity experiments were conducted with a grid spacing of approximately 25 km for a heavy rain case over the United States during 15–17 May 1995. In this paper, the trigger function setup in the convective parameterization scheme and its impact on the predicted precipitation are discussed. Special attention is given to the interaction of cloud properties in the parameterized convection with the evolution of grid-resolvable precipitation physics. The impact of convective forcing due to different convective triggers on the large-scale pattern downstream is also discussed. The implementation of the prognostic cloud scheme and performance are presented in a companion paper.

Full access
Hyeyum Hailey Shin
and
Song-You Hong

Abstract

The gray zone of a physical process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, the authors examine the grid-size dependencies of resolved and parameterized vertical transports in convective boundary layers (CBLs) for horizontal grid scales including the gray zone. To assess how stability alters the dependencies on grid size, four CBLs with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50–4000-m mesh sizes by filtering 25-m large-eddy simulation (LES) data.

As relative importance of shear increases, the ratio of resolved turbulent kinetic energy increases for a given grid spacing. Vertical transports of potential temperature, momentum, and a bottom-up diffusion passive scalar behave in a similar fashion. The effects of stability are related to the horizontal scale of coherent large-eddy structures that change in the different stability. The subgrid-scale vertical transport of heat and the bottom-up scalar are divided into a nonlocal mixing owing to the coherent structures and remaining local mixing. The separate treatment of the nonlocal and local transports shows that the grid-size dependency of the SGS nonlocal flux and its sensitivity to stability predominantly determine the dependency of total (nonlocal plus local) SGS transport.

Full access
Jung-Eun Kim
and
Song-You Hong

Abstract

Numerous modeling studies have shown that soil moisture anomalies in later spring have a significant effect on the summer rainfall anomalies in North America. On the other hand, the role of soil moisture in forming monsoonal precipitation in East Asia has not been identified. This study attempts to clarify the importance of soil moisture on the summer rainfall in late spring in East Asia. The National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) is utilized for 3-month (June–August) simulations in 1998 (above-normal precipitation year) and 1997 (below-normal precipitation year). Initial and boundary conditions are derived from the NCEP–Department of Energy (DOE) reanalysis. The control run uses the initial soil moisture from the reanalysis, whereas it is set as a saturation and wilting point for “wet” and “dry” experiments, respectively.

The impact of soil moisture anomalies on the simulated summer rainfall in East Asia is not significant. The change in precipitation between the wet and dry experiments is about 10%. A conflict between the local feedback of soil moisture and a change in large-scale circulations associated with the summertime monsoonal circulation in East Asia can be attributed as a reason for this anomaly. It is found that enhanced (suppressed) evaporation from the soil to the atmosphere in wet (dry) initial soil moisture reduces (increases) the land–sea contrast between East Asia and the Pacific Ocean, leading to a weakened sensitivity of the monsoonal circulations to the initial soil moisture. It can be concluded that the impact of the initial soil moisture is significant on the dynamic circulation in East Asia.

Full access
Yoo-Bin Yhang
and
Song-You Hong

Abstract

This paper documents the sensitivity of the modeled evolution of the East Asian summer monsoon (EASM) to physical parameterization using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). To this end, perfect boundary condition experiments driven by analysis data are designed for August 2003 to investigate the individual role of the surface processes, boundary layer, and convection parameterization on the simulated monsoon. Also, 10-yr June–August (JJA) simulations from 1996 to 2005 are performed to evaluate the overall impacts of these revisions on the simulated EASM climatology.

The one-month simulation for August 2003 reveals that the experiment with a realistic distribution of land use conditions and vegetation and smaller thermal roughness length simulates higher temperature and geopotential height. On the other hand, in the experiment with an improved boundary layer scheme, the rainfall amount is slightly decreased due to reduced vertical mixing. The simulation with revised subgrid-scale processes in the cumulus parameterization scheme reproduces a rainband over the subtropics, which is weakly simulated by the default package. The overall large-scale distribution from the experiment, which includes all three revised physics processes, shows the same direction as that of the revised convection run in the middle and upper troposphere, but is improved further when other newly enhanced processes are combined. These improvements are also achieved in a 10-yr summer simulation. It is distinct that the revised physics package improves the large-scale patterns by strengthening the intensity of the North Pacific high and reducing the intensity of the lower-level jet, which are critical components in the EASM. The general patterns of the interannual and intraseasonal variation of precipitation are also improved, in particular, over land.

Full access
Kyung-Hee Seol
and
Song-You Hong

Abstract

In 2003, a climate extreme accompanying a wet and cool summer over East Asia was recorded over the East Asian countries including central China, Korea, and Japan. A possible relation of this record-breaking summer in East Asia to above-normal snowfall over the Tibetan Plateau in spring has been investigated using the National Centers for Environmental Prediction (NCEP) global and regional models. The changes in the simulated East Asian summer monsoon circulations in response to snow anomalies over Tibet are highlighted.

The results from both global and regional model experiments suggest that above-normal snowfall over the Tibetan Plateau in May induces a weakening of the Tibetan high, which leads to the formation of favorable upper-level circulations accompanying cyclonic circulation anomalies covering the East Asian region in summer. These circulation anomalies in response to the snow anomalies over the plateau are more robust and closer to what was observed in the regional than in the global model results. The sensitivity experiments also show that the precipitation and lower-level circulation anomalies in summer, caused by the snow anomalies in spring, influence the above-normal precipitation in the lower reaches of the Yangtze River basin, as revealed in previous observational studies. However, the experiments do not fully explain the observed signals in Korea and Japan since the spring snow anomaly over Tibet plays a role in weakening the western Pacific subtropical high in the simulated summer, whereas in reality the intensity of the high was stronger than normal in 2003.

Full access
Jung-Eun Kim
and
Song-You Hong

Abstract

A global atmospheric analysis dataset is constructed via a spectral nudging technique. The 6-hourly National Centers for Environmental Prediction (NCEP)–Department of Energy (DOE) reanalysis from January 1979 to February 2011 is utilized to force large-scale information, whereas a higher-resolution structure is resolved by a global model with improved physics. The horizontal resolution of the downscaled data is about 100 km, twice that of the NCEP–DOE reanalysis.

A comparison of the 31-yr downscaled data with reanalysis data and observations reveals that the downscaled precipitation climatology is improved by correcting inherent biases in the lower-resolution reanalysis, and large-scale patterns are preserved. In addition, it is found that global downscaling is an efficient way to generate high-quality analysis data due to the use of a higher-resolution model with improved physics. The uniqueness of the obtained data lies in the fact that an undesirable decadal trend in the analysis due to a change in the amount of observations used in reanalysis is avoided. As such, a downscaled dataset may be used to investigate changes in the hydrological cycle and related mechanisms.

Full access
Song-You Hong
and
Yoo-Bin Yhang

Abstract

This study investigates a decadal climate shift over East Asia in winter, focusing on the changes in hydrological cycle as well as large-scale circulation using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). The RSM is forced by perfect boundary conditions for winter (December–February) from 1979 to 2007. Analyses for two separate periods (1979–87 and 1999–2007) are performed to investigate the regional climate model’s ability to simulate climate change in precipitation as well as large-scale circulation.

The RSM reproduces differences in large-scale features associated with winter climate change over East Asia when the winter monsoon is modulated on decadal time scales with its weakening pattern observed since the late 1980s. The model adequately reproduces a weakening of the Siberian high and shallowness of the Aleutian low in the lower troposphere and a weakened East Asian coastal trough and East Asian jet in the upper troposphere during 1999–2007, as compared to the first nine winters of 1979–87. Conversely, the decadal shift in precipitation is not well reproduced by the model. The model is capable of reproducing the power spectrum of daily precipitation with maxima at 8.5 days and 45 days in 1979–87, whereas widely spread peaks in 1999–2007 are not captured. The increase of precipitation due to parameterized convection is prominent. This study shows that the dynamical numerical model has a limited capability to reproduce the wintertime hydrological climate over East Asia associated with global warming in recent years.

Full access
So-Young Kim
and
Song-You Hong

Abstract

The source and sink terms of microphysical processes vary nonlinearly with cloud condensate amount. Therefore, partial cloudiness is one of the important factors to be considered in a cloud microphysics scheme given that in-cloud condensate amount depends on the cloud fraction of the grid box. An alternative concept to represent the partial cloudiness effect on the microphysical processes of a bulk microphysics scheme is proposed. Based on the statistical relationship between cloud condensate and cloudiness, all hydrometeors in the microphysical processes are treated after converting them to in-cloud values by dividing the amount by estimated cloudiness and multiplying it after the computation of all microphysics terms. The underlying assumption is that all the microphysical processes occur in a cloudy part of the grid box. In a 2D idealized storm case, the Weather Research and Forecasting (WRF) single-moment 5-class (WSM5) microphysics scheme with the proposed approach increases the amount of snow and rain through enhanced autoconversion/accretion and increases precipitation reaching the surface.

Full access