Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sophia E. Brumer x
  • Refine by Access: All Content x
Clear All Modify Search
Christopher J. Zappa
,
Michael L. Banner
,
Russel P. Morison
, and
Sophia E. Brumer

Abstract

A spectral framework for quantifying the geometric/kinematic and dynamic/energetic properties of breaking ocean waves was proposed by Phillips in 1985. Phillips assumed a constant breaking strength coefficient to link the kinematic/geometric breaking crest properties to the associated excess energy and momentum fluxes from the waves to the upper ocean. However, a scale-dependent (spectral) breaking strength coefficient is needed, but is unavailable from measurements. In this paper, the feasibility of a parametric mean effective breaking strength coefficient valid for a wide range of sea states is investigated. All available ocean breaking wave datasets were analyzed and complemented with wave model behavior. Robust evidence is found supporting a single linear parameter relationship between the effective breaking strength and wave age or significant wave steepness. Envisaged applications for the effective breaking strength are described.

Full access
Sophia E. Brumer
,
Christopher J. Zappa
,
Ian M. Brooks
,
Hitoshi Tamura
,
Scott M. Brown
,
Byron W. Blomquist
,
Christopher W. Fairall
, and
Alejandro Cifuentes-Lorenzen

Abstract

Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U 10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.

Full access