Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Stefan F. Cecelski x
  • All content x
Clear All Modify Search
Stefan F. Cecelski and Da-Lin Zhang

Abstract

In this study, the predictability of tropical cyclogenesis (TCG) is explored by conducting ensemble sensitivity analyses on the TCG of Hurricane Julia (2010). Using empirical orthogonal functions (EOFs), the dominant patterns of ensemble disagreements are revealed for various meteorological parameters such as mean sea level pressure (MSLP) and upper-tropospheric temperature. Using the principal components of the EOF patterns, ensemble sensitivities are generated to elucidate which mechanisms drive the parametric ensemble differences.

The dominant pattern of MSLP ensemble spread is associated with the intensity of the pre–tropical depression (pre-TD), explaining nearly half of the total variance at each respective time. Similar modes of variance are found for the low-level absolute vorticity, though the patterns explain substantially less variance. Additionally, the largest modes of variability associated with upper-level temperature anomalies closely resemble the patterns of MSLP variance, suggesting interconnectedness between the two parameters. Sensitivity analyses at both the pre-TD and TCG stages reveal that the MSLP disturbance is strongly correlated to upper-tropospheric temperature and, to a lesser degree, surface latent heat flux anomalies. Further sensitivity analyses uncover a statistically significant correlation between upper-tropospheric temperature and convective anomalies, consistent with the notion that deep convection is important for augmenting the upper-tropospheric warmth during TCG. Overall, the ensemble forecast differences for the TCG of Julia are strongly related to the processes responsible for MSLP falls and low-level cyclonic vorticity growth, including the growth of upper-tropospheric warming and persistent deep convection.

Full access
Stefan F. Cecelski and Da-Lin Zhang

Abstract

While a robust theoretical framework for tropical cyclogenesis (TCG) within African easterly waves (AEWs) has recently been developed, little work explores the development of low-level meso-β-scale vortices (LLVs) and a meso-α-scale surface low in relation to deep convection and upper-tropospheric warming. In this study, the development of an LLV into Hurricane Julia (2010) is shown through a high-resolution model simulation with the finest grid size of 1 km. The results presented expand upon the connections between LLVs and the AEW presented in previous studies while demonstrating the importance of upper-tropospheric warming for TCG.

It is found that the significant intensification phase of Hurricane Julia is triggered by the pronounced upper-tropospheric warming associated with organized deep convection. The warming is able to intensify and expand during TCG owing to formation of a storm-scale outflow beyond the Rossby radius of deformation. Results confirm previous ideas by demonstrating that the intersection of the AEW's trough axis and critical latitude is a preferred location for TCG, while supplementing such work by illustrating the importance of upper-tropospheric warming and meso-α-scale surface pressure falls during TCG. It is shown that the meso-β-scale surface low enhances boundary layer convergence and aids in the bottom-up vorticity development of the meso-β-scale LLV. The upper-level warming is attributed to heating within convective bursts at earlier TCG stages while compensating subsidence warming becomes more prevalent once a mesoscale convective system develops.

Full access
Stefan F. Cecelski and Da-Lin Zhang

Abstract

While much attention has been given to investigating the dynamics of tropical cyclogenesis (TCG), little work explores the thermodynamical evolution and related cloud microphysical processes occurring during TCG. This study elaborates on previous research by examining the impact of ice microphysics on the genesis of Hurricane Julia during the 2010 North Atlantic Ocean hurricane season. As compared with a control simulation, two sensitivity experiments are conducted in which the latent heat of fusion owing to depositional growth is removed in one experiment and homogeneous freezing is not allowed to occur in the other. Results show that removing the latent heat of fusion substantially reduces the warming of the upper troposphere during TCG. This results in a lack of meso-α-scale hydrostatic surface pressure falls and no tropical depression (TD)-scale mean sea level pressure (MSLP) disturbance. In contrast, removing homogeneous freezing has little impact on the structure and magnitude of the upper-tropospheric thermodynamic changes and MSLP disturbance. Fundamental changes to the strength and spatial extent of deep convection and related updrafts are found when removing the latent heat of fusion from depositional processes. That is, deep convection and related updrafts are weaker because of the lack of heating in the upper troposphere. These changes to convective development impact the creation of a storm-scale outflow and thus the accumulation of upper-tropospheric warming and the development of the TD-scale MSLP disturbance.

Full access
Stefan F. Cecelski, Da-Lin Zhang, and Takemasa Miyoshi

Abstract

In this study, the predictability of and parametric differences in the genesis of Hurricane Julia (2010) are investigated using 20 mesoscale ensemble forecasts with the finest resolution of 1 km. Results show that the genesis of Julia is highly predictable, with all but two members undergoing genesis. Despite the high predictability, substantial parametric differences exist between the stronger and weaker members. Notably, the strongest-developing member exhibits large upper-tropospheric warming within a storm-scale outflow during genesis. In contrast, the nondeveloping member has weak and more localized warming due to inhibited convective development and a lack of a storm-scale outflow. A reduction in the Rossby radius of deformation in the strongest member aids in the accumulation of the warmth, while little contraction takes place in the nondeveloping member. The warming in the upper troposphere is responsible for the development of meso-α-scale surface pressure falls and a meso-β surface low in the strongest-developing member. Such features fail to form in the nondeveloping member as weak upper-tropospheric warming is unable to induce meaningful surface pressure falls. Cloud ice content is nearly doubled in the strongest member as compared to its nondeveloping counterparts, suggesting the importance of depositional heating of the upper troposphere. It is found that the stronger member undergoes genesis faster due to the lack of convective inhibition near the African easterly wave (AEW) pouch center prior to genesis. This allows for the faster development of a mesoscale convective system and storm-scale outflow, given the already favorable larger-scale conditions.

Full access
Lin Zhu, Da-Lin Zhang, Stefan F. Cecelski, and Xinyong Shen

Abstract

The “bottom up” generation of low-level vortices (LVs) and midlevel vortices (MVs) during the genesis of Tropical Storm Debby (2006) and the roles of a midlevel “marsupial pouch” associated with an African easterly wave (AEW) are examined using an 84-h simulation with the finest grid size of 1.33 km. Results show that several MVs are generated in leading convective bands and then advected rearward into stratiform regions by front-to-rear ascending flows. Because of different Lagrangian storm-scale circulations, MVs and LVs are displaced along different paths during the early genesis stages. MVs propagate cyclonically inward within the AEW pouch while experiencing slow intensification and merging under the influence of converging flows. The MVs’ merging into a mesovortex is accelerated as they come closer to each other in the core region. In contrast, the low-level Lagrangian circulation is opened as a wave trough prior to tropical depression (TD) stage, so the LVs tend to “escape” from the pouch region. Only after the low-level flows become closed do some LVs congregate and contribute directly to Debby’s genesis. The TD stage is reached when the midlevel mesovortex and an LV are collocated with a convective zone having intense low-level convergence. Results also show the roles of upper-level warming in hydrostatically maintaining the midlevel pouch and producing mesoscale surface pressure falls. It is found that the vertically tilted AEW with a cold dome below is transformed to a deep warm-core TD vortex by subsiding motion. A conceptual model describing the key elements in the genesis of Debby is also provided.

Full access
Steven M. Lazarus, Jennifer M. Collins, Martin A. Baxter, Anne Case Hanks, Thomas M. Whittaker, Kevin R. Tyle, Stefan F. Cecelski, Bart Geerts, and Mohan K. Ramamurthy
Full access