Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Stefan Kollet x
  • All content x
Clear All Modify Search
Mauro Sulis, Matthias Langensiepen, Prabhakar Shrestha, Anke Schickling, Clemens Simmer, and Stefan J. Kollet

Abstract

Plant physiological properties have a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature dynamics, and the rate of carbon fixation. Because of the direct impact on latent heat fluxes, these properties may also influence weather-generating processes, such as the evolution of the atmospheric boundary layer (ABL). In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the biophysical parameterization of the Terrestrial Systems Modeling Platform (TerrSysMP). The physiological parameters for two typical European midlatitudinal crops (sugar beet and winter wheat) are validated using eddy covariance fluxes over multiple years from three measurement sites located in the North Rhine–Westphalia region of Germany. Comparison with observations and a simulation utilizing the generic crop type shows clear improvements when using the crop-specific physiological characteristics of the plant. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two crops leads to an improved quantification of the diurnal energy partitioning. An independent analysis carried out using estimates of gross primary production reveals that the better agreement between observed and simulated latent heat adopting the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, a series of semi-idealized land–atmosphere coupled simulations is performed by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL using the crop-specific physiological properties, which clearly impacts the evolution of the boundary layer.

Full access
Mauro Sulis, John L. Williams, Prabhakar Shrestha, Malte Diederich, Clemens Simmer, Stefan J. Kollet, and Reed M. Maxwell

Abstract

This study compares two modeling platforms, ParFlow.WRF (PF.WRF) and the Terrestrial Systems Modeling Platform (TerrSysMP), with a common 3D integrated surface–groundwater model to examine the variability in simulated soil–vegetation–atmosphere interactions. Idealized and hindcast simulations over the North Rhine–Westphalia region in western Germany for clear-sky conditions and strong convective precipitation using both modeling platforms are presented. Idealized simulations highlight the strong variability introduced by the difference in land surface parameterizations (e.g., ground evaporation and canopy transpiration) and atmospheric boundary layer (ABL) schemes on the simulated land–atmosphere interactions. Results of the idealized simulations also suggest a different range of sensitivity in the two models of land surface and atmospheric parameterizations to water-table depth fluctuations. For hindcast simulations, both modeling platforms simulate net radiation and cumulative precipitation close to observed station data, while larger differences emerge between spatial patterns of soil moisture and convective rainfall due to the difference in the physical parameterization of the land surface and atmospheric component. This produces a different feedback by the hydrological model in the two platforms in terms of discharge over different catchments in the study area. Finally, an analysis of land surface and ABL heat and moisture budgets using the mixing diagram approach reveals different sensitivities of diurnal atmospheric processes to the groundwater parameterizations in both modeling platforms.

Full access
Clemens Simmer, Insa Thiele-Eich, Matthieu Masbou, Wulf Amelung, Heye Bogena, Susanne Crewell, Bernd Diekkrüger, Frank Ewert, Harrie-Jan Hendricks Franssen, Johan Alexander Huisman, Andreas Kemna, Norbert Klitzsch, Stefan Kollet, Matthias Langensiepen, Ulrich Löhnert, A. S. M. Mostaquimur Rahman, Uwe Rascher, Karl Schneider, Jan Schween, Yaping Shao, Prabhakar Shrestha, Maik Stiebler, Mauro Sulis, Jan Vanderborght, Harry Vereecken, Jan van der Kruk, Guido Waldhoff, and Tanja Zerenner

Abstract

Most activities of humankind take place in the transition zone between four compartments of the terrestrial system: the unconfined aquifer, including the unsaturated zone; surface water; vegetation; and atmosphere. The mass, momentum, and heat energy fluxes between these compartments drive their mutual state evolution. Improved understanding of the processes that drive these fluxes is important for climate projections, weather prediction, flood forecasting, water and soil resources management, agriculture, and water quality control. The different transport mechanisms and flow rates within the compartments result in complex patterns on different temporal and spatial scales that make predictions of the terrestrial system challenging for scientists and policy makers. The Transregional Collaborative Research Centre 32 (TR32) was formed in 2007 to integrate monitoring with modeling and data assimilation in order to develop a holistic view of the terrestrial system. TR32 is a long-term research program funded by the German national science foundation Deutsche Forschungsgemeinschaft (DFG), in order to focus and integrate research activities of several universities on an emerging scientific topic of high societal relevance. Aiming to bridge the gap between microscale soil pores and catchment-scale atmospheric variables, TR32 unites research groups from the German universities of Aachen, Bonn, and Cologne, and from the environmental and geoscience departments of Forschungszentrum Jülich GmbH. Here, we report about recent achievements in monitoring and modeling of the terrestrial system, including the development of new observation techniques for the subsurface, the establishment of cross-scale, multicompartment modeling platforms from the pore to the catchment scale, and their use to investigate the propagation of patterns in the state and structure of the subsurface to the atmospheric boundary layer.

Full access