Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Stella Melo x
  • Refine by Access: All Content x
Clear All Modify Search
Ellen Eckert, David Hudak, Éva Mekis, Peter Rodriguez, Bo Zhao, Zen Mariani, Stella Melo, Kimberly Strong, and Kaley A. Walker

Abstract

To assess the performance of the most recent versions of the Global Precipitation Measurement (GPM) Integrated Multisatellite Retrievals for GPM (IMERG), namely, V05 and V06, in Arctic regions, comparisons with Environment and Climate Change Canada (ECCC) Climate Network stations north of 60°N were performed. This study focuses on the IMERG monthly final products. The mean bias and mean error-weighted bias were assessed in comparison with 25 precipitation gauge measurements at ECCC Climate Network stations. The results of this study indicate that IMERG generally detects higher precipitation rates in the Canadian Arctic than ground-based gauge instruments, with differences ranging up to 0.05 and 0.04 mm h−1 for the mean bias and the mean error-weighted bias, respectively. Both IMERG versions perform similarly, except for a few stations, where V06 tends to agree slightly better with ground-based measurements. IMERG’s tendency to detect more precipitation is in good agreement with findings indicating that weighing gauge measurements suffer from wind undercatch and other impairing factors, leading to lower precipitation estimates. Biases between IMERG and ground-based stations were found to be slightly larger during summer and fall, which is likely related to the increased precipitation rates during these seasons. Correlations of both versions of IMERG with the ground-based measurements are considerably lower in winter and spring than during summer and fall, which might be linked to issues that passive microwave (PMW) sensors encounter over ice and snow. However, high correlation coefficients with medians of 0.75–0.8 during summer and fall are very encouraging for potential future applications.

Open access
Paul Joe, Stella Melo, William R. Burrows, Barbara Casati, Robert W. Crawford, Armin Deghan, Gabrielle Gascon, Zen Mariani, Jason Milbrandt, and Kevin Strawbridge

Abstract

The goal of the Canadian Arctic Weather Science (CAWS) project is to conduct research into the future operational monitoring and forecasting programs of Environment and Climate Change Canada in the Arctic where increased economic and recreational activities are expected with enhanced transportation and search and rescue requirements. Due to cost, remoteness and vast geographical coverage, the future monitoring concept includes a combination of space-based observations, sparse in situ surface measurements, and advanced reference sites. A prototype reference site has been established at Iqaluit, Nunavut (63°45'N, 68°33'W), that includes a Ka-band radar, water vapor lidars (both in-house and commercial versions), multiple Doppler lidars, ceilometers, radiation flux, and precipitation sensors. The scope of the project includes understanding of the polar processes, evaluating new technologies, validation of satellite products, validation of numerical weather prediction systems, development of warning products, and communication of their risk to a variety of users. This contribution will provide an overview of the CAWS project to show some preliminary results and to encourage collaborations.

Free access
Paul Joe, Stella Melo, William R. Burrows, Barbara Casati, Robert W. Crawford, Armin Deghan, Gabrielle Gascon, Zen Mariani, Jason Milbrandt, and Kevin Strawbridge
Full access