Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Stephan Bakan x
  • Refine by Access: All Content x
Clear All Modify Search
Andreas Reuter
and
Stephan Bakan

Abstract

The potential of the 2D-Grey optical array probe (OAP) (with 10-μm resolution) to determine cloud microphysical properties is studied. Systematic test measurements with a spinning glass disk with sample spots of various sizes between 50 and 500 μm in diameter were conducted. These measurements show that the particle image diameter increases considerably if the particle crosses the illuminating laser beam at increasing distance from the object plane. Eventually, shadow images of the smaller spots lose even their circular image shape and appear fragmented. A method is proposed to improve the estimation of the nominal particle size of droplets from the recorded image by exploiting the four available shadow (grey) levels. Laboratory tests show that spherical particles from 50 to 500 μm in diameter can be properly sized with an rms uncertainty of less than 6%. After discussion of the concept of depth of field in OAPs, a definition for the 2D-Grey probe is presented that is consistent with the standard definition for the 2D-C probe. The authors’ measurements show the depth of field of the 2D-Grey probe to be three times larger than the value conventionally assumed for the 2D-C probe for which similar corrections have been recently discussed in the literature. Finally, the impact of these findings on particle size distribution for in situ measurements is discussed.

Full access
Christian-Philipp Klepp
,
Stephan Bakan
, and
Hartmut Graßl

Abstract

Case studies of rainfall, derived from Special Sensor Microwave Imager (SSM/I) satellite data during the passage of individual cyclones over the North Atlantic, are presented to enhance the knowledge of rainfall processes associated with frontal systems. A multisatellite method is applied for complete coverage of the North Atlantic twice a day. Different SSM/I precipitation algorithms have been tested for individual cyclones and compared to the Global Precipitation Climatology Project (GPCP) datasets. An independent rainfall pattern and intensity validation method is presented using voluntary observing ship (VOS) datasets and Advanced Very High Resolution Radiometer (AVHRR) images.

Intense cyclones occur frequently in the wintertime period, with cold fronts propagating far south over the North Atlantic. Following upstream, large cloud clusters are frequently embedded in the cellular structured cold air of the backside regions, which produce heavy convective rainfall events, especially in the region off Newfoundland around 50°N. These storms can be easily identified on AVHRR images. It transpired that only the SSM/I rainfall algorithm of Bauer and Schlüssel is sensitive enough to detect the rainfall patterns and intensities observed by VOS for those cyclone types over the North Atlantic. In contrast, the GPCP products do not recognize this backside rainfall, whereas the frontal rainfall conditions are well represented in all tested datasets. This is suggested from the results of an intensive intercomparison study with ship reports from the time period of the Fronts and Atlantic Storm Track Experiment (FASTEX) field campaign. For this purpose, a new technique has been developed to transfer ship report codes into rain-rate estimates. From the analysis of a complete life cycle of a cyclone, it follows that these mesoscale backside rainfall events contribute up to 25% to the total amount of rainfall in North Atlantic cyclones.

Full access
Axel Andersson
,
Christian Klepp
,
Karsten Fennig
,
Stephan Bakan
,
Hartmut Grassl
, and
Jörg Schulz

Abstract

Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux EP in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in EP of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.

Full access
Bjorn Stevens
,
Felix Ament
,
Sandrine Bony
,
Susanne Crewell
,
Florian Ewald
,
Silke Gross
,
Akio Hansen
,
Lutz Hirsch
,
Marek Jacob
,
Tobias Kölling
,
Heike Konow
,
Bernhard Mayer
,
Manfred Wendisch
,
Martin Wirth
,
Kevin Wolf
,
Stephan Bakan
,
Matthias Bauer-Pfundstein
,
Matthias Brueck
,
Julien Delanoë
,
André Ehrlich
,
David Farrell
,
Marvin Forde
,
Felix Gödde
,
Hans Grob
,
Martin Hagen
,
Evelyn Jäkel
,
Friedhelm Jansen
,
Christian Klepp
,
Marcus Klingebiel
,
Mario Mech
,
Gerhard Peters
,
Markus Rapp
,
Allison A. Wing
, and
Tobias Zinner

Abstract

A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.

Full access