Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Stephanie M. Downes x
  • Refine by Access: All Content x
Clear All Modify Search
Stephanie M. Downes and Andrew McC. Hogg

Abstract

Thirteen state-of-the-art climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to evaluate the response of the Antarctic Circumpolar Current (ACC) transport and Southern Ocean meridional overturning circulation to surface wind stress and buoyancy changes. Understanding how these flows—fundamental players in the global distribution of heat, gases, and nutrients—respond to climate change is currently a widely debated issue among oceanographers. Here, the authors analyze the circulation responses of these coarse-resolution coupled models to surface fluxes. Under a future CMIP5 climate pathway where the equivalent atmospheric CO2 reaches 1370 ppm by 2100, the models robustly project reduced Southern Ocean density in the upper 2000 m accompanied by strengthened stratification. Despite an overall increase in overlying wind stress (~20%), the projected ACC transports lie within ±15% of their historical state, and no significant relationship with changes in the magnitude or position of the wind stress is identified. The models indicate that a weakening of ACC transport at the end of the twenty-first century is correlated with a strong increase in the surface heat and freshwater fluxes in the ACC region. In contrast, the surface heat gain across the ACC region and the wind-driven surface transports are significantly correlated with an increased upper and decreased lower Eulerian-mean meridional overturning circulation. The change in the eddy-induced overturning in both the depth and density spaces is quantified, and it is found that the CMIP5 models project partial eddy compensation of the upper and lower overturning cells.

Full access
Stephanie M. Downes, Clothilde Langlais, Jordan P. Brook, and Paul Spence

Abstract

Subduction processes in the Southern Ocean transfer oxygen, heat, and anthropogenic carbon into the ocean interior. The future response of upper-ocean subduction, in the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) classes, is dependent on the evolution of the combined surface buoyancy forcing and overlying westerly wind stress. Here, the recently observed pattern of a poleward intensification of the westerly winds is divided into its shift and increase components. SAMW and AAIW formation occurs in regional “hot spots” in deep mixed layer zones, primarily in the southeast Indian and Pacific. It is found that the mixed layer depth responds differently to wind stress perturbations across these regional formation zones. An increase only in the westerly winds in the Indian sector steepens isopycnals and increases the local circulation, driving deeper mixed layers and increased subduction. Conversely, in the same region, a poleward shift and poleward intensification of the westerly winds reduces heat loss and increases freshwater input, thus decreasing the mixed layer depth and consequently the associated SAMW and AAIW subduction. In the Pacific sector, all wind stress perturbations lead to increases in heat loss and decreases in freshwater input, resulting in a net increase in SAMW and AAIW subduction. Overall, the poleward shift in the westerly wind stress dominates the SAMW subduction changes, rather than the increase in wind stress. The net decrease in SAMW subduction across all basins would likely decrease anthropogenic carbon sequestration; however, the net AAIW subduction changes across the Southern Ocean are overall minor.

Full access
Stephanie M. Downes, Nathaniel L. Bindoff, and Stephen R. Rintoul

Abstract

Changes in the temperature, salinity, and subduction of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) between the 1950s and 2090s are diagnosed using the CSIRO Mark version 3.5 (Mk3.5) climate system model Caps under a CO2 forcing that reaches 860 ppm by the year 2100. These Southern Ocean upper-limb water masses ventilate the ocean interior, and changes in their properties have been related to climate change in numerous studies. Over time, the authors follow the low potential vorticity and salinity minimum layers describing SAMW and AAIW and find that the water column in the 2090s shifts to lighter densities by approximately 0.2 kg m−3. The model projects a reduction in the SAMW and AAIW annual mean subduction rates as a result of a combination of a shallower mixed layer, increased potential vorticity at the base of the mixed layer, and a net buoyancy gain. There is little change in the projected total volume of SAMW transported into the ocean interior via the subduction process; however, the authors find a significant decrease in the subduction of AAIW. The authors find overall that increases in the air–sea surface heat and freshwater fluxes mainly control the reduction in the mean loss of the SAMW and AAIW surface buoyancy flux when compared with the effect of changes supplied by Ekman transport because of increased zonal wind stress. In the A2 scenario, there are cooling and freshening on neutral density surfaces less than 27.3 kg m−3 in response to the warming and freshening observed at the ocean’s surface. The model projects deepening of density surfaces due to southward shifts in the outcrop regions and the downward displacement of these surfaces north of 45°S. The volume transport across 32°S is predicted to decrease in all three basins, with southward transport of SAMW and AAIW decreasing by up to 1.2 and 2.0 Sv (1 Sv ≡ 106 m3 s−1), respectively, in the Indian Ocean. These projected reductions in the subduction and transport of mode and intermediate water masses in the CSIRO Mk3.5 model could potentially decrease the absorption and storage of CO2 in the Southern Ocean.

Full access
Stephanie M. Downes, Nathaniel L. Bindoff, and Stephen R. Rintoul

Abstract

A multimodel comparison method is used to assess the sensitivity of Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) formation to climate change. For the Intergovernmental Panel on Climate Change A2 emissions scenario (where atmospheric CO2 is 860 ppm at 2100), the models show cooling and freshening on density surfaces less than about 27.4 kg m−3, a pattern that has been observed in the late twentieth century. SAMW (defined by the low potential vorticity layer) and AAIW (defined by the salinity minimum layer) warm and freshen as they shift to lighter density classes. Heat and freshwater fluxes at the ocean surface dominate the projected buoyancy gain at outcrop regions of SAMW and AAIW, whereas the net increase in the Ekman flux of heat and freshwater contributes to a lesser extent. This buoyancy gain, combined with shoaling of the winter mixed layer, reduces the volume of SAMW subducted into the ocean interior by a mean of 8 Sv (12%), and the subduction of AAIW decreases by a mean of 14 Sv (23%; 1 Sv ≡ 106 m3 s−1). Decreases in the projected subduction of the key Southern Ocean upper-water masses imply a slow down in the Southern Ocean circulation in the future, driven by surface warming and freshening. A reduction in the subduction of intermediate waters implies a likely future decrease in the capacity of the Southern Ocean to sequester CO2.

Full access
Stephanie M. Downes, Andrew McC. Hogg, Stephen M. Griffies, and Bonita L. Samuels

Abstract

Model and observational studies have concluded that geothermal heating significantly alters the global overturning circulation and the properties of the widely distributed Antarctic Bottom Water. Here two distinct geothermal heat flux datasets are tested under different experimental designs in a fully coupled model that mimics the control run of a typical Coupled Model Intercomparison Project (CMIP) climate model. The regional analysis herein reveals that bottom temperature and transport changes, due to the inclusion of geothermal heating, are propagated throughout the water column, most prominently in the Southern Ocean, with the background density structure and major circulation pathways acting as drivers of these changes. While geothermal heating enhances Southern Ocean abyssal overturning circulation by 20%–50%, upwelling of warmer deep waters and cooling of upper ocean waters within the Antarctic Circumpolar Current (ACC) region decrease its transport by 3–5 Sv (1 Sv = 106 m3 s−1). The transient responses in regional bottom temperature increases exceed 0.1°C. The large-scale features that are shown to transport anomalies far from their geothermal source all exist in the Southern Ocean. Such features include steeply sloping isopycnals, weak abyssal stratification, voluminous southward flowing deep waters and exported bottom waters, the ACC, and the polar gyres. Recently the Southern Ocean has been identified as a prime region for deep ocean warming; geothermal heating should be included in climate models to ensure accurate representation of these abyssal temperature changes.

Full access
Stephanie M. Downes, Anand Gnanadesikan, Stephen M. Griffies, and Jorge L. Sarmiento

Abstract

The authors estimate water mass transformation rates resulting from surface buoyancy fluxes and interior diapycnal fluxes in the region south of 30°S in the Estimating the Circulation and Climate of the Ocean (ECCO) model-based state estimation and three free-running coupled climate models. The meridional transport of deep and intermediate waters across 30°S agrees well between models and observationally based estimates in the Atlantic Ocean but not in the Indian and Pacific, where the model-based estimates are much smaller. Associated with this, in the models about half the southward-flowing deep water is converted into lighter waters and half is converted to denser bottom waters, whereas the observationally based estimates convert most of the inflowing deep water to bottom waters. In the models, both Antarctic Intermediate Water (AAIW) and Antarctic Bottom Water (AABW) are formed primarily via an interior diapycnal transformation rather than being transformed at the surface via heat or freshwater fluxes. Given the small vertical diffusivity specified in the models in this region, the authors conclude that other processes such as cabbeling and thermobaricity must be playing an important role in water mass transformation. Finally, in the models, the largest contribution of the surface buoyancy fluxes in the Southern Ocean is to convert Upper Circumpolar Deep Water (UCDW) and AAIW into lighter Subantarctic Mode Water (SAMW).

Full access
Stephanie M. Downes, Robert M. Key, Alejandro H. Orsi, Kevin G. Speer, and James H. Swift

Abstract

This study uses potential vorticity and other tracers to identify the pathways of the densest form of Circumpolar Deep Water in the South Pacific, termed “Southwest Pacific Bottom Water” (SPBW), along the 28.2 kg m−3 surface. This study focuses on the potential vorticity signals associated with three major dynamical processes occurring in the vicinity of the Pacific–Antarctic Ridge: 1) the strong flow of the Antarctic Circumpolar Current (ACC), 2) lateral eddy stirring, and 3) heat and stratification changes in bottom waters induced by hydrothermal vents. These processes result in southward and downstream advection of low potential vorticity along rising isopycnal surfaces. Using δ 3He released from the hydrothermal vents, the influence of volcanic activity on the SPBW may be traced across the South Pacific along the path of the ACC to Drake Passage. SPBW also flows within the southern limb of the Ross Gyre, reaching the Antarctic Slope in places and contributes via entrainment to the formation of Antarctic Bottom Water. Finally, it is shown that the magnitude and location of the potential vorticity signals associated with SPBW have endured over at least the last two decades, and that they are unique to the South Pacific sector.

Full access
Kate Snow, Andrew McC. Hogg, Bernadette M. Sloyan, and Stephanie M. Downes

Abstract

The influence of freshwater and heat flux changes on Antarctic Bottom Water (AABW) properties are investigated within a realistic bathymetry coupled ocean–ice sector model of the Atlantic Ocean. The model simulations are conducted at eddy-permitting resolution where dense shelf water production dominates over open ocean convection in forming AABW. Freshwater and heat flux perturbations are applied independently and have contradictory surface responses, with increased upper-ocean temperature and reduced ice formation under heating and the opposite under increased freshwater fluxes. AABW transport into the abyssal ocean reduces under both flux changes, with the reduction in transport being proportional to the net buoyancy flux anomaly south of 60°S.

Through inclusion of shelf-sourced AABW, a process absent from most current generation climate models, cooling and freshening of dense source water is facilitated via reduced on-shelf/off-shelf exchange flow. Such cooling is propagated to the abyssal ocean, while compensating warming in the deep ocean under heating introduces a decadal-scale variability of the abyssal water masses. This study emphasizes the fundamental role buoyancy plays in controlling AABW, as well as the importance of the inclusion of shelf-sourced AABW within climate models in order to attain the complete spectrum of possible climate change responses.

Full access
Eun Young Kwon, Stephanie M. Downes, Jorge L. Sarmiento, Riccardo Farneti, and Curtis Deutsch

Abstract

A kinematic approach is used to diagnose the subduction rates of upper–Southern Ocean waters across seasonally migrating density outcrops at the base of the mixed layer. From an Eulerian viewpoint, the term representing the temporal change in the mixed layer depth (which is labeled as the temporal induction in this study; i.e., S temp = ∂h/∂t where h is the mixed layer thickness, and t is time) vanishes over several annual cycles. Following seasonally migrating density outcrops, however, the temporal induction is attributed partly to the temporal change in the mixed layer thickness averaged over a density outcrop following its seasonally varying position and partly to the lateral movement of the outcrop position intersecting the sloping mixed layer base. Neither the temporal induction following an outcrop nor its integral over the outcrop area vanishes over several annual cycles. Instead, the seasonal eddy subduction, which arises primarily because of the subannual correlations between the seasonal cycles of the mixed layer depth and the outcrop area, explains the key mechanism by which mode waters are transferred from the mixed layer to the underlying pycnocline. The time-mean exchange rate of waters across the base of the mixed layer is substantially different from the exchange rate of waters across the fixed winter mixed layer base in mode water density classes. Nearly 40% of the newly formed Southern Ocean mode waters appear to be diapycnally transformed within the seasonal pycnocline before either being subducted into the main pycnocline or entrained back to the mixed layer through lighter density classes.

Full access
Andrew McC. Hogg, Paul Spence, Oleg A. Saenko, and Stephanie M. Downes

Abstract

The ocean’s meridional overturning circulation is closed by the upwelling of dense, carbon-rich waters to the surface of the Southern Ocean. It has been proposed that upwelling in this region is driven by strong westerly winds, implying that the intensification of Southern Ocean winds in recent decades may have enhanced the rate of upwelling, potentially affecting the global overturning circulation. However, there is no consensus on the sensitivity of upwelling to winds or on the nature of the connection between Southern Ocean processes and the global overturning circulation. In this study, the sensitivity of the overturning circulation to changes in Southern Ocean westerly wind stress is investigated using an eddy-permitting ocean–sea ice model. In addition to a suite of standard circulation metrics, an energy analysis is used to aid dynamical interpretation of the model response. Increased Southern Ocean wind stress enhances the upper cell of the overturning circulation through creation of available potential energy in the Southern Hemisphere, associated with stronger upwelling of deep water. Poleward shifts in the Southern Ocean westerlies lead to a complicated transient response, with the formation of bottom water induced by increased polynya activity in the Weddell Sea and a weakening of the upper overturning cell in the Northern Hemisphere. The energetic consequences of the upper overturning cell response indicate an interhemispheric connection to the input of available potential energy in the Northern Hemisphere.

Full access