Search Results
You are looking at 1 - 10 of 38 items for
- Author or Editor: Stephen D. Eckermann x
- Refine by Access: All Content x
Abstract
A straightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the example herein, a single wave) within each grid box. Deterministic discretizations of source-level momentum flux spectra using a fixed spectrum of many waves with predefined phase speeds are replaced by sampling these source spectra stochastically using waves with randomly assigned phase speeds. Using simple conversion formulas, it is shown that time-mean wave-induced drag, diffusion, and heating-rate profiles identical to those from the deterministic scheme are produced by the stochastic analog. Furthermore, in these examples the need for bulk intermittency factors of small value is largely obviated through the explicit incorporation of stochastic intermittency into the scheme. When implemented in a GCM, the single-wave stochastic analog of an existing deterministic scheme reproduces almost identical time-mean middle-atmosphere climate and drag as its deterministic antecedent but with an order of magnitude reduction in computational expense. The stochastically parameterized drag is also accompanied by inherent variability about the time-mean profile that forces the smallest space–time scales of the GCM. Studies of mean GCM kinetic energy spectra show that this additional stochastic forcing does not lead to excessive increases in dynamical variability at these smallest GCM scales. The results show that the expensive deterministic schemes currently used in GCMs are easily modified and replaced by cheap stochastic analogs without any obvious deleterious impacts on GCM climate or variability, while offering potential advantages of computational savings, reduction of systematic climate biases, and greater and more realistic ensemble spread.
Abstract
A straightforward methodology is presented for converting the deterministic multiwave parameterizations of nonorographic gravity wave drag, currently used in general circulation models (GCMs), to stochastic analogs that use fewer waves (in the example herein, a single wave) within each grid box. Deterministic discretizations of source-level momentum flux spectra using a fixed spectrum of many waves with predefined phase speeds are replaced by sampling these source spectra stochastically using waves with randomly assigned phase speeds. Using simple conversion formulas, it is shown that time-mean wave-induced drag, diffusion, and heating-rate profiles identical to those from the deterministic scheme are produced by the stochastic analog. Furthermore, in these examples the need for bulk intermittency factors of small value is largely obviated through the explicit incorporation of stochastic intermittency into the scheme. When implemented in a GCM, the single-wave stochastic analog of an existing deterministic scheme reproduces almost identical time-mean middle-atmosphere climate and drag as its deterministic antecedent but with an order of magnitude reduction in computational expense. The stochastically parameterized drag is also accompanied by inherent variability about the time-mean profile that forces the smallest space–time scales of the GCM. Studies of mean GCM kinetic energy spectra show that this additional stochastic forcing does not lead to excessive increases in dynamical variability at these smallest GCM scales. The results show that the expensive deterministic schemes currently used in GCMs are easily modified and replaced by cheap stochastic analogs without any obvious deleterious impacts on GCM climate or variability, while offering potential advantages of computational savings, reduction of systematic climate biases, and greater and more realistic ensemble spread.
Abstract
The “Doppler spread” theory of atmospheric gravity waves has developed rapidly in recent years, from an initial theory of wave spectra into a general parameterization of gravity wave effects for use in global models of the middle atmosphere. Yet the theory currently employs certain key approximations that have still to be tested. The author focuses on the omission of the propagation of the other waves in the spectrum when determining the Doppler spreading of a given gravity wave. This approximation is shown to become untenable as waves are refracted to progressively shorter vertical scales, so ray methods are employed to investigate the refraction characteristics of short waves within propagating long-wave fields. Short-wave refraction is reduced compared to the Doppler-spread results. While turning levels are common, critical levels do not occur if all waves propagate upward in the absence of mean wind shear. Consequently, a sharp increase in the probability of wave obliteration beyond the so-called cutoff vertical wavenumber (a central tenet of Doppler-spread theory) no longer occurs. Possible implications of these results for models of wave–field interactions, spectra, and momentum deposition are discussed.
Abstract
The “Doppler spread” theory of atmospheric gravity waves has developed rapidly in recent years, from an initial theory of wave spectra into a general parameterization of gravity wave effects for use in global models of the middle atmosphere. Yet the theory currently employs certain key approximations that have still to be tested. The author focuses on the omission of the propagation of the other waves in the spectrum when determining the Doppler spreading of a given gravity wave. This approximation is shown to become untenable as waves are refracted to progressively shorter vertical scales, so ray methods are employed to investigate the refraction characteristics of short waves within propagating long-wave fields. Short-wave refraction is reduced compared to the Doppler-spread results. While turning levels are common, critical levels do not occur if all waves propagate upward in the absence of mean wind shear. Consequently, a sharp increase in the probability of wave obliteration beyond the so-called cutoff vertical wavenumber (a central tenet of Doppler-spread theory) no longer occurs. Possible implications of these results for models of wave–field interactions, spectra, and momentum deposition are discussed.
Abstract
The gravity wave (GW)–resolving capabilities of 118-GHz saturated thermal radiances acquired throughout the stratosphere by the Microwave Limb Sounder (MLS) on the Aura satellite are investigated and initial results presented. Because the saturated (optically thick) radiances resolve GW perturbations from a given altitude at different horizontal locations, variances are evaluated at 12 pressure altitudes between ∼21 and 51 km using the 40 saturated radiances found at the bottom of each limb scan. Forward modeling simulations show that these variances are controlled mostly by GWs with vertical wavelengths λz > 5 km and horizontal along-track wavelengths of λy ∼ 100–200 km. The tilted cigar-shaped three-dimensional weighting functions yield highly selective responses to GWs of high intrinsic frequency that propagate toward the instrument. The latter property is used to infer the net meridional component of GW propagation by differencing the variances acquired from ascending (A) and descending (D) orbits. Because of improved vertical resolution and sensitivity, Aura MLS GW variances are ∼5–8 times larger than those from the Upper Atmosphere Research Satellite (UARS) MLS. Like UARS MLS variances, monthly-mean Aura MLS variances in January and July 2005 are enhanced when local background wind speeds are large, due largely to GW visibility effects. Zonal asymmetries in variance maps reveal enhanced GW activity at high latitudes due to forcing by flow over major mountain ranges and at tropical and subtropical latitudes due to enhanced deep convective generation as inferred from contemporaneous MLS cloud-ice data. At 21–28-km altitude (heights not measured by the UARS MLS), GW variance in the tropics is systematically enhanced and shows clear variations with the phase of the quasi-biennial oscillation, in general agreement with GW temperature variances derived from radiosonde, rocketsonde, and limb-scan vertical profiles. GW-induced temperature variances at ∼44-km altitude derived from operational global analysis fields of the ECMWF Integrated Forecast System in August 2006 reveal latitudinal bands of enhanced GW variance and preferred GW meridional propagation directions that are similar to those inferred from the MLS variances, highlighting the potential of MLS GW data for validating the stratospheric GWs simulated and/or parameterized in global models.
Abstract
The gravity wave (GW)–resolving capabilities of 118-GHz saturated thermal radiances acquired throughout the stratosphere by the Microwave Limb Sounder (MLS) on the Aura satellite are investigated and initial results presented. Because the saturated (optically thick) radiances resolve GW perturbations from a given altitude at different horizontal locations, variances are evaluated at 12 pressure altitudes between ∼21 and 51 km using the 40 saturated radiances found at the bottom of each limb scan. Forward modeling simulations show that these variances are controlled mostly by GWs with vertical wavelengths λz > 5 km and horizontal along-track wavelengths of λy ∼ 100–200 km. The tilted cigar-shaped three-dimensional weighting functions yield highly selective responses to GWs of high intrinsic frequency that propagate toward the instrument. The latter property is used to infer the net meridional component of GW propagation by differencing the variances acquired from ascending (A) and descending (D) orbits. Because of improved vertical resolution and sensitivity, Aura MLS GW variances are ∼5–8 times larger than those from the Upper Atmosphere Research Satellite (UARS) MLS. Like UARS MLS variances, monthly-mean Aura MLS variances in January and July 2005 are enhanced when local background wind speeds are large, due largely to GW visibility effects. Zonal asymmetries in variance maps reveal enhanced GW activity at high latitudes due to forcing by flow over major mountain ranges and at tropical and subtropical latitudes due to enhanced deep convective generation as inferred from contemporaneous MLS cloud-ice data. At 21–28-km altitude (heights not measured by the UARS MLS), GW variance in the tropics is systematically enhanced and shows clear variations with the phase of the quasi-biennial oscillation, in general agreement with GW temperature variances derived from radiosonde, rocketsonde, and limb-scan vertical profiles. GW-induced temperature variances at ∼44-km altitude derived from operational global analysis fields of the ECMWF Integrated Forecast System in August 2006 reveal latitudinal bands of enhanced GW variance and preferred GW meridional propagation directions that are similar to those inferred from the MLS variances, highlighting the potential of MLS GW data for validating the stratospheric GWs simulated and/or parameterized in global models.
Abstract
Numerical transform solutions for hydrostatic gravity waves generated by both uniform and sheared flow over elliptical obstacles are used to quantify effects of horizontal geometrical spreading on amplitude evolution with height. Both vertical displacement and steepness amplitudes are considered because of their close connections to drag parameterizations in weather and climate models. Novel diagnostics quantify the location and value of the largest wavefield amplitudes most likely to break at each altitude. These horizontal locations do not stray far from the obstacle peak even at high altitudes. Resulting vertical profiles of wave amplitude are normalized to remove density and refraction effects, thereby quantifying the horizontal geometrical spreading contribution, currently absent from parameterizations. Horizontal geometrical spreading produces monotonic amplitude decreases with height through wave-action conservation as waves propagate into progressively larger horizontal areas. Accumulated amplitude reductions are appreciable for all but the most quasi-two-dimensional obstacles with long axes orthogonal to the flow, and even these are impacted appreciably if the obstacle is rotated by more than 20°–30°. Profiles are insensitive to the obstacle’s functional form but vary strongly in response to changes in its horizontal aspect ratio. Responses to background winds are captured by a vertical coordinate transformation that remaps profiles to a universal form for a given obstacle. These results show that horizontal geometrical spreading has comparable or larger effects on wave amplitudes as the refraction of vertical wavenumbers and thus is important for accurate parameterizations of wave breaking and drag.
Abstract
Numerical transform solutions for hydrostatic gravity waves generated by both uniform and sheared flow over elliptical obstacles are used to quantify effects of horizontal geometrical spreading on amplitude evolution with height. Both vertical displacement and steepness amplitudes are considered because of their close connections to drag parameterizations in weather and climate models. Novel diagnostics quantify the location and value of the largest wavefield amplitudes most likely to break at each altitude. These horizontal locations do not stray far from the obstacle peak even at high altitudes. Resulting vertical profiles of wave amplitude are normalized to remove density and refraction effects, thereby quantifying the horizontal geometrical spreading contribution, currently absent from parameterizations. Horizontal geometrical spreading produces monotonic amplitude decreases with height through wave-action conservation as waves propagate into progressively larger horizontal areas. Accumulated amplitude reductions are appreciable for all but the most quasi-two-dimensional obstacles with long axes orthogonal to the flow, and even these are impacted appreciably if the obstacle is rotated by more than 20°–30°. Profiles are insensitive to the obstacle’s functional form but vary strongly in response to changes in its horizontal aspect ratio. Responses to background winds are captured by a vertical coordinate transformation that remaps profiles to a universal form for a given obstacle. These results show that horizontal geometrical spreading has comparable or larger effects on wave amplitudes as the refraction of vertical wavenumbers and thus is important for accurate parameterizations of wave breaking and drag.
Abstract
The WKB ray-tracing formalism is extended to accommodate internal gravity waves of all frequencies in a rotating, stratified, and compressible three-dimensional atmosphere. This includes the derivation of equations governing the dispersion and refraction of the ray paths, a realistic wave amplitude equation that takes into account both radiative and turbulent damping effects, and extensions of previous wave saturation schemes to accommodate dynamical and convective instabilities along generally slanted axes.
These equations have been numerically coded into a global ray-tracing model that the authors have applied to the three-dimensional CIRA 1986 reference atmosphere model in a series of preliminary experiments to investigate the impact of the newly incorporated features on synthesized wave fields in the middle atmosphere.
Three main points emerge from these experiments. First, there is a striking reduction in the high-frequency cutoff with decreasing horizontal wavenumber due to a more complete dispersion relation. Second, adoption of a climatological, height-varying turbulent diffusivity profile based on measurements indicates that turbulent damping is more important than scale-dependent infrared radiative damping over a wide range of wavelengths and frequencies in all but the lower levels of the middle atmosphere. Last, the authors demonstrate that the presence of climatological planetary waves during the northern winter produces greatly varied ray paths for waves of fixed characteristics launched from different longitudes. The implications of these findings for future ray-tracing studies are discussed.
Abstract
The WKB ray-tracing formalism is extended to accommodate internal gravity waves of all frequencies in a rotating, stratified, and compressible three-dimensional atmosphere. This includes the derivation of equations governing the dispersion and refraction of the ray paths, a realistic wave amplitude equation that takes into account both radiative and turbulent damping effects, and extensions of previous wave saturation schemes to accommodate dynamical and convective instabilities along generally slanted axes.
These equations have been numerically coded into a global ray-tracing model that the authors have applied to the three-dimensional CIRA 1986 reference atmosphere model in a series of preliminary experiments to investigate the impact of the newly incorporated features on synthesized wave fields in the middle atmosphere.
Three main points emerge from these experiments. First, there is a striking reduction in the high-frequency cutoff with decreasing horizontal wavenumber due to a more complete dispersion relation. Second, adoption of a climatological, height-varying turbulent diffusivity profile based on measurements indicates that turbulent damping is more important than scale-dependent infrared radiative damping over a wide range of wavelengths and frequencies in all but the lower levels of the middle atmosphere. Last, the authors demonstrate that the presence of climatological planetary waves during the northern winter produces greatly varied ray paths for waves of fixed characteristics launched from different longitudes. The implications of these findings for future ray-tracing studies are discussed.
Abstract
Four extended observational campaigns were conducted during August and November 1988 with an ST (stratosphere–troposphere) radar in southern Australia during the passage of cold fronts over the system, giving around 30 days of three-dimensional wind measurements with 15-min time and 0.5-km height resolution over the 2–11.5-km height range. Order of magnitude increases in the variance of time-fluctuating wind velocities were measured during frontal passages, which are definitively ascribed to gravity waves. The time–height morphology of the horizontal- and vertical-velocity fluctuations differed. Bursts of horizontal-velocity variance
Abstract
Four extended observational campaigns were conducted during August and November 1988 with an ST (stratosphere–troposphere) radar in southern Australia during the passage of cold fronts over the system, giving around 30 days of three-dimensional wind measurements with 15-min time and 0.5-km height resolution over the 2–11.5-km height range. Order of magnitude increases in the variance of time-fluctuating wind velocities were measured during frontal passages, which are definitively ascribed to gravity waves. The time–height morphology of the horizontal- and vertical-velocity fluctuations differed. Bursts of horizontal-velocity variance
Abstract
Effects of horizontal geometrical spreading on the amplitude variation with height of linear three-dimensional hydrostatic orographic gravity waves (OGWs) are quantified via relevant simplifications to the governing transform relations, leading to analytical solutions. The analysis is restricted to elliptical Gaussian obstacles with principal axes aligned parallel and perpendicular to unidirectional shear flow and to vertical displacement and steepness amplitudes, given their relevance to OGW drag parameterizations in global models. Two solutions are derived: a “small l” solution in which horizontal wavenumbers l orthogonal to the flow are taken to be much smaller than those parallel to the flow, and a “single k” solution in which horizontal wavenumbers k parallel to the flow have a single mean value. The resulting analytical relations, valid for arbitrary vertical profiles of upstream winds and stability, depend only on the obstacle’s elliptical aspect ratio β and a normalized height coordinate incorporating wind and stability variations. These analytical approximations accurately reproduce the salient features of the exact numerical transform solutions. These include monotonic decreases with height that asymptotically approach z −1/2 forms at large z and strong β dependence in amplitude diminution with height. Steepness singularities close to the surface are shown to be a mathematical consequence of the Hilbert transform approach to deriving complex wavefield solutions. These approximate analytical solutions for horizontal geometrical spreading effects on wave amplitude highlight the importance of this missing physics for current parameterizations of OGW drag and offer an accurate and efficient means of incorporating some of these omitted effects.
Abstract
Effects of horizontal geometrical spreading on the amplitude variation with height of linear three-dimensional hydrostatic orographic gravity waves (OGWs) are quantified via relevant simplifications to the governing transform relations, leading to analytical solutions. The analysis is restricted to elliptical Gaussian obstacles with principal axes aligned parallel and perpendicular to unidirectional shear flow and to vertical displacement and steepness amplitudes, given their relevance to OGW drag parameterizations in global models. Two solutions are derived: a “small l” solution in which horizontal wavenumbers l orthogonal to the flow are taken to be much smaller than those parallel to the flow, and a “single k” solution in which horizontal wavenumbers k parallel to the flow have a single mean value. The resulting analytical relations, valid for arbitrary vertical profiles of upstream winds and stability, depend only on the obstacle’s elliptical aspect ratio β and a normalized height coordinate incorporating wind and stability variations. These analytical approximations accurately reproduce the salient features of the exact numerical transform solutions. These include monotonic decreases with height that asymptotically approach z −1/2 forms at large z and strong β dependence in amplitude diminution with height. Steepness singularities close to the surface are shown to be a mathematical consequence of the Hilbert transform approach to deriving complex wavefield solutions. These approximate analytical solutions for horizontal geometrical spreading effects on wave amplitude highlight the importance of this missing physics for current parameterizations of OGW drag and offer an accurate and efficient means of incorporating some of these omitted effects.
Abstract
A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model mountain waves from Jan Mayen on 25 January 2000, a period when wavelike cloud banding was observed long distances downstream of the island by the Advanced Very High Resolution Radiometer Version 3 (AVHRR-3). Surface weather patterns show intensifying surface geostrophic winds over the island at 1200 UTC caused by rapid eastward passage of a compact low pressure system. The 1200 UTC wind profiles over the island increase with height to a jet maximum of ∼60–70 m s−1, yielding Scorer parameters that indicate vertical trapping of any short wavelength mountain waves. Separate Fourier-ray solutions were computed using high-resolution Jan Mayen orography and 1200 UTC vertical profiles of winds and temperatures over the island from a radiosonde sounding and an analysis system. The radiosonde-based simulations produce a purely diverging trapped wave solution that reproduces the salient features in the AVHRR-3 imagery. Differences in simulated wave patterns governed by the radiosonde and analysis profiles are explained in terms of resonant modes and are corroborated by spatial ray-group trajectories computed for wavenumbers along the resonant mode curves. Output from a nonlinear Lipps–Hemler orographic flow model also compares well with the Fourier-ray solution horizontally. Differences in vertical cross sections are ascribed to the Fourier-ray model’s current omission of tunneling of trapped wave energy through evanescent layers.
Abstract
A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model mountain waves from Jan Mayen on 25 January 2000, a period when wavelike cloud banding was observed long distances downstream of the island by the Advanced Very High Resolution Radiometer Version 3 (AVHRR-3). Surface weather patterns show intensifying surface geostrophic winds over the island at 1200 UTC caused by rapid eastward passage of a compact low pressure system. The 1200 UTC wind profiles over the island increase with height to a jet maximum of ∼60–70 m s−1, yielding Scorer parameters that indicate vertical trapping of any short wavelength mountain waves. Separate Fourier-ray solutions were computed using high-resolution Jan Mayen orography and 1200 UTC vertical profiles of winds and temperatures over the island from a radiosonde sounding and an analysis system. The radiosonde-based simulations produce a purely diverging trapped wave solution that reproduces the salient features in the AVHRR-3 imagery. Differences in simulated wave patterns governed by the radiosonde and analysis profiles are explained in terms of resonant modes and are corroborated by spatial ray-group trajectories computed for wavenumbers along the resonant mode curves. Output from a nonlinear Lipps–Hemler orographic flow model also compares well with the Fourier-ray solution horizontally. Differences in vertical cross sections are ascribed to the Fourier-ray model’s current omission of tunneling of trapped wave energy through evanescent layers.
Abstract
A vertical eigenfunction equation is solved to examine the partial reflection and partial transmission of tsunami-generated gravity waves propagating through a height-dependent background atmosphere from the ocean surface into the lower thermosphere. There are multiple turning points for each vertical eigenfunction (at least eight in one example), yet the wave transmission into the thermosphere is significant. Examples are given for gravity wave propagation through an idealized wind jet centered near the mesopause and through a realistic vertical profile of wind and temperature relevant to the tsunami generated by the Sumatra earthquake on 26 December 2004.
Abstract
A vertical eigenfunction equation is solved to examine the partial reflection and partial transmission of tsunami-generated gravity waves propagating through a height-dependent background atmosphere from the ocean surface into the lower thermosphere. There are multiple turning points for each vertical eigenfunction (at least eight in one example), yet the wave transmission into the thermosphere is significant. Examples are given for gravity wave propagation through an idealized wind jet centered near the mesopause and through a realistic vertical profile of wind and temperature relevant to the tsunami generated by the Sumatra earthquake on 26 December 2004.