Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Steve Koch x
  • Refine by Access: All Content x
Clear All Modify Search
Lígia Bernardet, Louisa Nance, Meral Demirtas, Steve Koch, Edward Szoke, Tressa Fowler, Andrew Loughe, Jennifer Luppens Mahoney, Hui-Ya Chuang, Matthew Pyle, and Robert Gall

The Weather Research and Forecasting (WRF) Developmental Testbed Center (DTC) was formed to promote exchanges between the development and operational communities in the field of Numerical Weather Prediction (NWP). The WRF DTC serves to accelerate the transfer of NWP technology from research to operations and to support a subset of the current WRF operational configurations to the general community. This article describes the mission and recent activities of the WRF DTC, including a detailed discussion about one of its recent projects, the WRF DTC Winter Forecasting Experiment (DWFE).

DWFE was planned and executed by the WRF DTC in collaboration with forecasters and model developers. The real-time phase of the experiment took place in the winter of 2004/05, with two dynamic cores of the WRF model being run once per day out to 48 h. The models were configured with 5-km grid spacing over the entire continental United States to ascertain the value of high-resolution numerical guidance for winter weather prediction. Forecasts were distributed to many National Weather Service Weather Forecast Offices to allow forecasters both to familiarize themselves with WRF capabilities prior to WRF becoming operational at the National Centers for Environmental Prediction (NCEP) in the North American Mesoscale Model (NAM) application, and to provide feedback about the model to its developers. This paper presents the experiment's configuration, the results of objective forecast verification, including uncertainty measures, a case study to illustrate the potential use of DWFE products in the forecasting process, and a discussion about the importance and challenges of real-time experiments involving forecaster participation.

Full access
F. Martin Ralph, Janet Intrieri, David Andra Jr., Robert Atlas, Sid Boukabara, David Bright, Paula Davidson, Bruce Entwistle, John Gaynor, Steve Goodman, Jiann-Gwo Jiing, Amy Harless, Jin Huang, Gary Jedlovec, John Kain, Steven Koch, Bill Kuo, Jason Levit, Shirley Murillo, Lars Peter Riishojgaard, Timothy Schneider, Russell Schneider, Travis Smith, and Steven Weiss

Test beds have emerged as a critical mechanism linking weather research with forecasting operations. The U.S. Weather Research Program (USWRP) was formed in the 1990s to help identify key gaps in research related to major weather prediction problems and the role of observations and numerical models. This planning effort ultimately revealed the need for greater capacity and new approaches to improve the connectivity between the research and forecasting enterprise.

Out of this developed the seeds for what is now termed “test beds.” While many individual projects, and even more broadly the NOAA/National Weather Service (NWS) Modernization, were successful in advancing weather prediction services, it was recognized that specific forecast problems warranted a more focused and elevated level of effort. The USWRP helped develop these concepts with science teams and provided seed funding for several of the test beds described.

Based on the varying NOAA mission requirements for forecasting, differences in the organizational structure and methods used to provide those services, and differences in the state of the science related to those forecast challenges, test beds have taken on differing characteristics, strategies, and priorities. Current test bed efforts described have all emerged between 2000 and 2011 and focus on hurricanes (Joint Hurricane Testbed), precipitation (Hydrometeorology Testbed), satellite data assimilation (Joint Center for Satellite Data Assimilation), severe weather (Hazardous Weather Testbed), satellite data support for severe weather prediction (Short-Term Prediction Research and Transition Center), mesoscale modeling (Developmental Testbed Center), climate forecast products (Climate Testbed), testing and evaluation of satellite capabilities [Geostationary Operational Environmental Satellite-R Series (GOES-R) Proving Ground], aviation applications (Aviation Weather Testbed), and observing system experiments (OSSE Testbed).

Full access
Melanie Wetzel, David Dempsey, Sandra Nilsson, Mohan Ramamurthy, Steve Koch, Jennie Moody, David Knight, Charles Murphy, David Fulker, Mary Marlino, Michael Morgan, Doug Yarger, Dan Vietor, and Greg Cox

An education-oriented workshop for college faculty in the atmospheric and related sciences was held in Boulder, Colorado, during June 1997 by three programs of the University Corporation for Atmospheric Research. The objective of this workshop was to provide faculty with hands-on training in the use of Web-based instructional methods for specific application to the teaching of satellite remote sensing in their subject areas. More than 150 faculty and associated scientists participated, and postworkshop evaluation showed it to have been a very successful integration of information and activities related to computer-based instruction, educational principles, and scientific lectures.

Full access