Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: Steven C. Hardiman x
  • Refine by Access: All Content x
Clear All Modify Search
Steven C. Hardiman
,
David G. Andrews
,
Andy A. White
,
Neal Butchart
, and
Ian Edmond

Abstract

Transformed Eulerian mean (TEM) equations and Eliassen–Palm (EP) flux diagnostics are presented for the general nonhydrostatic, fully compressible, deep atmosphere formulation of the primitive equations in spherical geometric coordinates. The TEM equations are applied to a general circulation model (GCM) based on these general primitive equations. It is demonstrated that a naive application in this model of the widely used approximations to the EP diagnostics, valid for the hydrostatic primitive equations using log-pressure as a vertical coordinate and presented, for example, by Andrews et al. in 1987 can lead to misleading features in these diagnostics. These features can be of the same order of magnitude as the diagnostics themselves throughout the winter stratosphere. Similar conclusions are found to hold for “downward control” calculations. The reasons are traced to the change of vertical coordinate from geometric height to log-pressure. Implications for the modeling community, including comparison of model output with that from reanalysis products available only on pressure surfaces, are discussed.

Full access
Amy H. Butler
,
Dian J. Seidel
,
Steven C. Hardiman
,
Neal Butchart
,
Thomas Birner
, and
Aaron Match

Abstract

Sudden stratospheric warmings (SSWs) are large, rapid temperature rises in the winter polar stratosphere, occurring predominantly in the Northern Hemisphere. Major SSWs are also associated with a reversal of the climatological westerly zonal-mean zonal winds. Circulation anomalies associated with SSWs can descend into the troposphere with substantial surface weather impacts, such as wintertime extreme cold air outbreaks. After their discovery in 1952, SSWs were classified by the World Meteorological Organization. An examination of literature suggests that a single, original reference for an exact definition of SSWs is elusive, but in many references a definition involves the reversal of the meridional temperature gradient and, for major warmings, the reversal of the zonal circulation poleward of 60° latitude at 10 hPa.

Though versions of this definition are still commonly used to detect SSWs, the details of the definition and its implementation remain ambiguous. In addition, other SSW definitions have been used in the last few decades, resulting in inconsistent classification of SSW events. We seek to answer the questions: How has the SSW definition changed, and how sensitive is the detection of SSWs to the definition used? For what kind of analysis is a “standard” definition useful? We argue that a standard SSW definition is necessary for maintaining a consistent and robust metric to assess polar stratospheric wintertime variability in climate models and other statistical applications. To provide a basis for, and to encourage participation in, a communitywide discussion currently underway, we explore what criteria are important for a standard definition and propose possible ways to update the definition.

Full access
Christopher G. Fletcher
,
Steven C. Hardiman
,
Paul J. Kushner
, and
Judah Cohen

Abstract

Variability in the extent of fall season snow cover over the Eurasian sector has been linked in observations to a teleconnection with the winter northern annular mode pattern. Here, the dynamics of this teleconnection are investigated using a 100-member ensemble of transient integrations of the GFDL atmospheric general circulation model (AM2). The model is perturbed with a simple persisted snow anomaly over Siberia and is integrated from October through December. Strong surface cooling occurs above the anomalous Siberian snow cover, which produces a tropospheric form stress anomaly associated with the vertical propagation of wave activity. This wave activity response drives wave–mean flow interaction in the lower stratosphere and subsequent downward propagation of a negative-phase northern annular mode response back into the troposphere. A wintertime coupled stratosphere–troposphere response to fall season snow forcing is also found to occur even when the snow forcing itself does not persist into winter. Finally, the response to snow forcing is compared in versions of the same model with and without a well-resolved stratosphere. The version with the well-resolved stratosphere exhibits a faster and weaker response to snow forcing, and this difference is tied to the unrealistic representation of the unforced lower-stratospheric circulation in that model.

Full access
Scott M. Osprey
,
Lesley J. Gray
,
Steven C. Hardiman
,
Neal Butchart
, and
Tim J. Hinton

Abstract

An examination is made of stratospheric climate, circulation, and variability in configurations of the Hadley Centre Global Environmental Model version 2 (HadGEM2) differing only in stratospheric resolution and the placement of the model lid. This is made in the context of historical reconstructions of twentieth-century climate. A reduction in the westerly bias in the Northern Hemisphere polar night jet is found in the high-top model. The authors also find significant differences in the expression of tropical stratospheric variability, finding improvements in the high-top model for the presence of the quasi-biennial oscillation, for tropical upwelling consistent with interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) data, and for interannual changes in stratospheric water vapor concentration comparable to satellite observations. Further differences are seen at high latitudes during winter in the frequency of occurrence of sudden stratospheric warmings (SSWs). The occurrence rate of SSWs in the high-top simulations, (7.2 ± 0.5) decade−1, is statistically consistent with observations, (6.0 ± 1.0) decade−1, whereas they are one-third as frequent in the low-top simulations, (2.5 ± 0.5) decade−1. Furthermore, the structure of the timing of winter final warmings is only captured in the high-top model. A similar characterization for the time evolution of the width of the tropical upper troposphere is found between model configurations. It is concluded that an adequate representation of the stratosphere is required to capture the important modes of tropical and extratropical stratospheric variability in models.

Full access
Xiaocen Shen
,
Lin Wang
,
Adam A. Scaife
,
Steven C. Hardiman
, and
Peiqiang Xu

Abstract

Changes in the stratospheric polar vortex (SPV) can remarkably impact tropospheric circulation. Based on the diagnosis of reanalysis data, this study finds that the location shift rather than the strength change dominates the intraseasonal variability of SPV. Further analysis suggests that it couples well with the tropospheric circulation, forming an intraseasonal stratosphere–troposphere oscillation (STO). The STO shows periodic westward propagation throughout its life cycle and has a deep structure extending from the troposphere to the stratosphere. It reflects the movement of the SPV toward North America, then the North Pacific, Eurasia, and the North Atlantic, and causes significant changes in surface air temperature over North America and East Asia. The mechanism of the STO involves Rossby wave propagation between the troposphere and stratosphere and cross-scale interactions in the troposphere. Upward Rossby wave propagation from the troposphere over East Asia maintains the STO’s stratospheric component, and the reflection of these waves back to the troposphere contributes substantially to the STO’s tropospheric center over North America. Meanwhile, the linear and nonlinear processes explain the STO’s westward propagation in the troposphere, which facilities vertical wave propagation changes. The STO unifies the SPV shifts, the retrograding tropospheric disturbances, and the wave coupling processes into one framework and provides a holistic view for a better understanding of the intraseasonal stratosphere–troposphere coupling. Given its oscillating nature, time scale, and widespread surface response, the STO may be a potential source of predictability for the subseasonal-to-seasonal prediction.

Significance Statement

Stratospheric circulation plays a vital role in influencing tropospheric weather and climate, but its variability and coupling with the troposphere have not been fully understood for the intraseasonal time scale. This study finds that the Northern Annular Mode is the leading mode of variability in the extratropical Northern Hemisphere stratosphere on time scales longer than 60 days, which reflects the changes in the intensity of the stratospheric polar vortex. In contrast, the shift of the stratospheric polar vortex excels as the leading mode on time scales shorter than 60 days and is identified as a stratosphere–troposphere oscillation (STO) phenomenon. In the stratosphere, the STO is characterized by the shift of the polar vortex and rotates clockwise with time. In the troposphere, the STO is manifested as a large-scale westward-propagating circulation in the midlatitudes, with significant near-surface temperature anomalies across the continents. The formation of the STO is further attributed to the vertical and horizontal Rossby wave propagation. As STO is a periodic oscillation, it may serve as a potential predictability source for subseasonal-to-seasonal climate prediction.

Restricted access
Xiaocen Shen
,
Lin Wang
,
Scott Osprey
,
Steven C. Hardiman
,
Adam A. Scaife
, and
Ji Ma

Abstract

Motivated by the strong Antarctic sudden stratospheric warming (SSW) in 2019, a survey on the similar Antarctic weak polar vortex events (WPVs) is presented, including their life cycle, dynamics, seasonality, and climatic impacts. The Antarctic WPVs have a frequency of about four events per decade, with the 2002 event being the only major SSW. They show a similar life cycle to the SSWs in the Northern Hemisphere but have a longer duration. They are primarily driven by enhanced upward-propagating wavenumber 1 in the presence of a preconditioned polar stratosphere (i.e., a weaker and more contracted Antarctic stratospheric polar vortex). Antarctic WPVs occur mainly in the austral spring. Their early occurrence is preceded by an easterly anomaly in the middle and upper equatorial stratosphere in addition to the preconditioned polar stratosphere. The Antarctic WPVs increase the ozone concentration in the polar region and are associated with an advanced seasonal transition of the stratospheric polar vortex by about one week. Their frequency doubles after 2000 and is closely related to the advanced Antarctic stratospheric final warming in recent decades. The WPV-resultant negative phase of the southern annular mode descends to the troposphere and persists for about three months, leading to persistent hemispheric-scale temperature and precipitation anomalies.

Significance Statement

The Antarctic weak polar vortex events (WPVs) are similar to the sudden stratospheric warming (SSW), but many of their characteristics remain unclear. Their climatology is presented as a benchmark based on high-quality reanalysis datasets. WPVs have a life cycle that is similar to that of Arctic SSWs but has a longer duration. They occur due to the amplified tropospheric wave forcing in the presence of a preconditioned polar stratosphere. Its seasonality is partly controlled by the equatorial stratospheric easterly in addition to the polar stratosphere. Its occurrence is closely related to the advanced breakdown of the Antarctic polar vortex and can reduce the size of the Antarctic ozone hole. Moreover, it further causes persistent hemispheric-scale climate anomalies in the troposphere, which provides a prediction potential for surface weather and climate.

Full access
Scott M. Osprey
,
Lesley J. Gray
,
Steven C. Hardiman
,
Neal Butchart
,
Andrew C. Bushell
, and
Tim J. Hinton

Abstract

Stratospheric variability is examined in a vertically extended version of the Met Office global climate model. Equatorial variability includes the simulation of an internally generated quasi-biennial oscillation (QBO) and semiannual oscillation (SAO). Polar variability includes an examination of the frequency of sudden stratospheric warmings (SSW) and annular mode variability. Results from two different horizontal resolutions are also compared. Changes in gravity wave filtering at the higher resolution result in a slightly longer QBO that extends deeper into the lower stratosphere. At the higher resolution there is also a reduction in the occurrence rate of sudden stratospheric warmings, in better agreement with observations. This is linked with reduced levels of resolved waves entering the high-latitude stratosphere. Covariability of the tropical and extratropical stratosphere is seen, linking the phase of the QBO with disturbed NH winters, although this linkage is sporadic, in agreement with observations. Finally, tropospheric persistence time scales and seasonal variability for the northern and southern annular modes are significantly improved at the higher resolution, consistent with findings from other studies.

Full access
Daniel M. Mitchell
,
Scott M. Osprey
,
Lesley J. Gray
,
Neal Butchart
,
Steven C. Hardiman
,
Andrew J. Charlton-Perez
, and
Peter Watson
Full access
William J. M. Seviour
,
Steven C. Hardiman
,
Lesley J. Gray
,
Neal Butchart
,
Craig MacLachlan
, and
Adam A. Scaife

Abstract

Using a set of seasonal hindcast simulations produced by the Met Office Global Seasonal Forecast System, version 5 (GloSea5), significant predictability of the southern annular mode (SAM) is demonstrated during the austral spring. The correlation of the September–November mean SAM with observed values is 0.64, which is statistically significant at the 95% confidence level [confidence interval: (0.18, 0.92)], and is similar to that found recently for the North Atlantic Oscillation in the same system. Significant skill is also found in the prediction of the strength of the Antarctic stratospheric polar vortex at 1 month average lead times. Because of the observed strong correlation between interannual variability in the strength of the Antarctic stratospheric circulation and ozone concentrations, it is possible to make skillful predictions of Antarctic column ozone amounts. By studying the variation of forecast skill with time and height, it is shown that skillful predictions of the SAM are significantly influenced by stratospheric anomalies that descend with time and are coupled with the troposphere. This effect allows skillful statistical forecasts of the October mean SAM to be produced based only on midstratosphere anomalies on 1 August. Together, these results both demonstrate a significant advance in the skill of seasonal forecasts of the Southern Hemisphere and highlight the importance of accurate modeling and observation of the stratosphere in producing long-range forecasts.

Open access
Doug M. Smith
,
Nick J. Dunstone
,
Adam A. Scaife
,
Emma K. Fiedler
,
Dan Copsey
, and
Steven C. Hardiman
Full access