Search Results
You are looking at 1 - 10 of 73 items for
- Author or Editor: Steven Feldstein x
- Refine by Access: All Content x
Abstract
The temporal evolution of a regional-scale persistent low-frequency anomaly is examined with data from a 2100-day perpetual January general circulation model. The persistent episodes are determined with an objective analysis of the low-pass (>10 day) 350-mb streamfunction field that uses both pattern correlations and empirical orthogonal function (EOF) analysis.
The composite evolution of each term in the streamfunction tendency equation is calculated relative to the onset day (the first day of the persistent episode). By projecting each term in the streamfunction tendency equation onto an EOF (the EOF is associated with a particular low-frequency anomaly), the contribution of these terms toward the tendency of the corresponding principal component can be obtained. It is found that the sum of the linear terms dominates during most of the growth and the decay of the low-frequency anomaly. The linear term that accounts for the growth and maintenance of the low-frequency anomaly is the interaction between the anomaly and the time-mean zonally asymmetric flow. After the anomaly attains sufficient amplitude, its decay is accomplished through the divergence term. For one phase of the EOF, it is found that the high-frequency transients prolong the anomaly, whereas in the other phase they do not.
Implications of this study for examining monthly averaged anomalies are also discussed.
Abstract
The temporal evolution of a regional-scale persistent low-frequency anomaly is examined with data from a 2100-day perpetual January general circulation model. The persistent episodes are determined with an objective analysis of the low-pass (>10 day) 350-mb streamfunction field that uses both pattern correlations and empirical orthogonal function (EOF) analysis.
The composite evolution of each term in the streamfunction tendency equation is calculated relative to the onset day (the first day of the persistent episode). By projecting each term in the streamfunction tendency equation onto an EOF (the EOF is associated with a particular low-frequency anomaly), the contribution of these terms toward the tendency of the corresponding principal component can be obtained. It is found that the sum of the linear terms dominates during most of the growth and the decay of the low-frequency anomaly. The linear term that accounts for the growth and maintenance of the low-frequency anomaly is the interaction between the anomaly and the time-mean zonally asymmetric flow. After the anomaly attains sufficient amplitude, its decay is accomplished through the divergence term. For one phase of the EOF, it is found that the high-frequency transients prolong the anomaly, whereas in the other phase they do not.
Implications of this study for examining monthly averaged anomalies are also discussed.
Abstract
The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomalous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction–National Center for Atmospheric Research Reanalysis data.
By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the midlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction.
For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-frequency eddies (period less than 10 days) was found. These eddies act to prolong the lifetime of the ZI anomalies against the dissipative influences of both low-frequency (period greater than 10 days) and cross-frequency (eddy fluxes that involves the product of high- and low-frequency disturbances) eddy forcing and the friction torque.
Abstract
The authors address the question of whether or not eddy feedback plays an important role in driving the anomalous relative angular momentum associated with the zonal index (ZI) in the atmosphere. For this purpose, composites of anomalous relative angular momentum and anomalous eddy angular momentum flux convergence (eddy forcing) are examined with National Centers for Environmental Prediction–National Center for Atmospheric Research Reanalysis data.
By using an empirical orthogonal function analysis, it is found that ZI behavior dominates the summer season of both hemispheres and also the winter season of the Southern Hemisphere. For the summer season, the ZI is characterized by meridional displacements of the midlatitude eddy-driven jet, and for the Southern Hemisphere winter it is characterized by a simultaneous movement of the subtropical and eddy-driven jets in the opposite direction.
For the ZI of each of the above seasons, unfiltered eddy forcing did not exhibit a prominent eddy feedback. However, suggestive evidence for a feedback by high-frequency eddies (period less than 10 days) was found. These eddies act to prolong the lifetime of the ZI anomalies against the dissipative influences of both low-frequency (period greater than 10 days) and cross-frequency (eddy fluxes that involves the product of high- and low-frequency disturbances) eddy forcing and the friction torque.
Abstract
The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. The primary methodology involves the regression of relevant variables including the equatorial bulge, mountain, and friction torques, surface pressure, streamfunction, and outgoing longwave radiation, against the time derivative of the two components and the amplitude of the EAAM vector.
The results indicate that the observed 10-day westward rotation of the EAAM vector corresponds to the propagation of a zonal wavenumber-1, antisymmetric, Rossby wave normal mode. Additional findings suggest that fluctuations in the amplitude of the EAAM vector are driven by poleward-propagating Rossby waves excited by the latent heating within equatorial mixed Rossby–gravity waves and also by wave–wave interaction among planetary waves. Both of these processes can induce surface pressure anomalies that amplify the EAAM vector via the equatorial bulge torque. The Antarctic and Greenland mountain torques were found to drive large fluctuations in the amplitude of the EAAM vector. Both the friction torque and wave–zonal-mean flow interaction were shown to dampen the EAAM amplitude fluctuations.
A comparison of the EAAM dynamics in the atmosphere with that in an aquaplanet GCM suggests that the mountain torque also drives fluctuations in the phase speed of the atmospheric wave field associated with the EAAM vector, and it confines the wave–wave interaction to planetary scales.
Abstract
The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations are examined with the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. The primary methodology involves the regression of relevant variables including the equatorial bulge, mountain, and friction torques, surface pressure, streamfunction, and outgoing longwave radiation, against the time derivative of the two components and the amplitude of the EAAM vector.
The results indicate that the observed 10-day westward rotation of the EAAM vector corresponds to the propagation of a zonal wavenumber-1, antisymmetric, Rossby wave normal mode. Additional findings suggest that fluctuations in the amplitude of the EAAM vector are driven by poleward-propagating Rossby waves excited by the latent heating within equatorial mixed Rossby–gravity waves and also by wave–wave interaction among planetary waves. Both of these processes can induce surface pressure anomalies that amplify the EAAM vector via the equatorial bulge torque. The Antarctic and Greenland mountain torques were found to drive large fluctuations in the amplitude of the EAAM vector. Both the friction torque and wave–zonal-mean flow interaction were shown to dampen the EAAM amplitude fluctuations.
A comparison of the EAAM dynamics in the atmosphere with that in an aquaplanet GCM suggests that the mountain torque also drives fluctuations in the phase speed of the atmospheric wave field associated with the EAAM vector, and it confines the wave–wave interaction to planetary scales.
Abstract
This investigation examines the dynamical processes that drive the anomalous friction torque associated with intraseasonal length-of-day fluctuations. Diagnostic analyses with National Centers for Environmental Protection–National Center for Atmospheric Research reanalysis and National Oceanic and Atmospheric Administration outgoing longwave radiation data are performed. The approach adopted is to use the mean meridional circulation (MMC) as a proxy for the friction torque, and then to examine the MMC that is driven both by eddy fluxes and zonal mean diabatic heating.
The following simple picture emerges from this analyses. For the austral winter (May through September), the anomalous friction torque in both hemispheres is driven by anomalous zonal mean convection. For the boreal winter (November through March), the anomalous friction torque in the Northern Hemisphere is driven primarily by eddy fluxes, whereas in the Southern Hemisphere the anomalous friction torque is also driven by anomalous zonal mean convection. However, the dynamics associated with this convection for the Southern Hemisphere boreal winter may be rather subtle, as the results suggest that this convection may in turn be driven by eddies within the Northern Hemisphere.
Abstract
This investigation examines the dynamical processes that drive the anomalous friction torque associated with intraseasonal length-of-day fluctuations. Diagnostic analyses with National Centers for Environmental Protection–National Center for Atmospheric Research reanalysis and National Oceanic and Atmospheric Administration outgoing longwave radiation data are performed. The approach adopted is to use the mean meridional circulation (MMC) as a proxy for the friction torque, and then to examine the MMC that is driven both by eddy fluxes and zonal mean diabatic heating.
The following simple picture emerges from this analyses. For the austral winter (May through September), the anomalous friction torque in both hemispheres is driven by anomalous zonal mean convection. For the boreal winter (November through March), the anomalous friction torque in the Northern Hemisphere is driven primarily by eddy fluxes, whereas in the Southern Hemisphere the anomalous friction torque is also driven by anomalous zonal mean convection. However, the dynamics associated with this convection for the Southern Hemisphere boreal winter may be rather subtle, as the results suggest that this convection may in turn be driven by eddies within the Northern Hemisphere.
Abstract
The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations in a 4000-day aquaplanet GCM run are examined. The all-ocean lower boundary has a sea surface temperature field that is both independent of longitude and symmetric across the equator. Because of the absence of topography, the model includes an equatorial bulge and friction torque, but not a mountain torque. The methodology adopted is to regress variables such as surface pressure, streamfunction, precipitation, and the two torques against individual components and the amplitude of the EAAM vector.
The results indicate that the phase of the EAAM vector is associated with the westward propagation of a zonal wavenumber-1 midlatitude Rossby wave. This wave has characteristics that closely match those of a normal mode of the GCM and also those of the first antisymmetric rotational mode of the shallow water model on the sphere. Fluctuations in the amplitude of the EAAM vector are found to be related to the presence of a zonal wavenumber-1 mixed Rossby–gravity wave in the Tropics. The structure of the precipitation anomalies suggests that the latent heat release associated with the mixed Rossby–gravity wave excites poleward Rossby wave propagation, which alters the EAAM amplitude. The above dynamical processes are also found to determine the phase and amplitude of the equatorial bulge torque. It is this torque that dominates the driving of the EAAM. Lastly, the properties of the friction torque are discussed.
Abstract
The dynamical processes that drive intraseasonal equatorial atmospheric angular momentum (EAAM) fluctuations in a 4000-day aquaplanet GCM run are examined. The all-ocean lower boundary has a sea surface temperature field that is both independent of longitude and symmetric across the equator. Because of the absence of topography, the model includes an equatorial bulge and friction torque, but not a mountain torque. The methodology adopted is to regress variables such as surface pressure, streamfunction, precipitation, and the two torques against individual components and the amplitude of the EAAM vector.
The results indicate that the phase of the EAAM vector is associated with the westward propagation of a zonal wavenumber-1 midlatitude Rossby wave. This wave has characteristics that closely match those of a normal mode of the GCM and also those of the first antisymmetric rotational mode of the shallow water model on the sphere. Fluctuations in the amplitude of the EAAM vector are found to be related to the presence of a zonal wavenumber-1 mixed Rossby–gravity wave in the Tropics. The structure of the precipitation anomalies suggests that the latent heat release associated with the mixed Rossby–gravity wave excites poleward Rossby wave propagation, which alters the EAAM amplitude. The above dynamical processes are also found to determine the phase and amplitude of the equatorial bulge torque. It is this torque that dominates the driving of the EAAM. Lastly, the properties of the friction torque are discussed.
Abstract
The atmospheric dynamical processes that drive intraseasonal polar motion are examined with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data and with pole position data from the International Earth Rotation Service. The primary methodology involves the regression of different atmospheric variables against the polar motion excitation function.
A power spectral analysis of the polar motion excitation function finds a statistically significant peak at 10 days. Correlation calculations show that this peak is associated with the 10-day, first antisymmetric, zonal wavenumber 1, normal mode of the atmosphere. A coherency calculation indicates that the atmospheric driving of polar motion is mostly confined to two frequency bands, with periods of 7.5–13 and 13–90 days. Regressions of surface pressure reveal that the 7.5–13-day band corresponds to the 10-day atmospheric normal mode and the 13–90-day band to a quasi-stationary wave.
The regressions of pole position and the various torques indicate not only that the equatorial bulge torque dominates the mountain and friction torques but also that the driving by the equatorial bulge torque accounts for a substantial fraction of the intraseasonal polar motion. Furthermore, although the 10-day and quasi-stationary wave contributions to the equatorial bulge torque are similar, the response in the pole position is primarily due to the quasi-stationary wave.
Additional calculations of regressed power spectra and meridional heat fluxes indicate that the atmospheric wave pattern that drives polar motion is itself excited by synoptic-scale eddies. Regressions of pole position with separate torques from either hemisphere show that most of the pole displacement arises from the equatorial bulge torque from the winter hemisphere. Together with the above findings on wave–wave interactions, these results suggest that synoptic-scale eddies in the winter hemisphere excite the quasi-stationary wave, which in turn drives the polar motion through the equatorial bulge torque.
Abstract
The atmospheric dynamical processes that drive intraseasonal polar motion are examined with National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data and with pole position data from the International Earth Rotation Service. The primary methodology involves the regression of different atmospheric variables against the polar motion excitation function.
A power spectral analysis of the polar motion excitation function finds a statistically significant peak at 10 days. Correlation calculations show that this peak is associated with the 10-day, first antisymmetric, zonal wavenumber 1, normal mode of the atmosphere. A coherency calculation indicates that the atmospheric driving of polar motion is mostly confined to two frequency bands, with periods of 7.5–13 and 13–90 days. Regressions of surface pressure reveal that the 7.5–13-day band corresponds to the 10-day atmospheric normal mode and the 13–90-day band to a quasi-stationary wave.
The regressions of pole position and the various torques indicate not only that the equatorial bulge torque dominates the mountain and friction torques but also that the driving by the equatorial bulge torque accounts for a substantial fraction of the intraseasonal polar motion. Furthermore, although the 10-day and quasi-stationary wave contributions to the equatorial bulge torque are similar, the response in the pole position is primarily due to the quasi-stationary wave.
Additional calculations of regressed power spectra and meridional heat fluxes indicate that the atmospheric wave pattern that drives polar motion is itself excited by synoptic-scale eddies. Regressions of pole position with separate torques from either hemisphere show that most of the pole displacement arises from the equatorial bulge torque from the winter hemisphere. Together with the above findings on wave–wave interactions, these results suggest that synoptic-scale eddies in the winter hemisphere excite the quasi-stationary wave, which in turn drives the polar motion through the equatorial bulge torque.
Abstract
This study uses National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data to investigate the extent to which interannual zonal index (ZI) fluctuations occur in the atmosphere and whether interannual ZI fluctuations can be accounted for by climate noise associated with the intraseasonal ZI. By using an empirical orthogonal function analysis, it is shown that the ZI is indeed a prominent form of interannual variability, because the interannual ZI corresponds to EOF1 (EOF2) for the winter (summer) seasons of both hemispheres. Also, by application of spectral, correlation, and χ 2 analyses, it is shown that interannual ZI variability can be interpreted as arising from climate noise.
Abstract
This study uses National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data to investigate the extent to which interannual zonal index (ZI) fluctuations occur in the atmosphere and whether interannual ZI fluctuations can be accounted for by climate noise associated with the intraseasonal ZI. By using an empirical orthogonal function analysis, it is shown that the ZI is indeed a prominent form of interannual variability, because the interannual ZI corresponds to EOF1 (EOF2) for the winter (summer) seasons of both hemispheres. Also, by application of spectral, correlation, and χ 2 analyses, it is shown that interannual ZI variability can be interpreted as arising from climate noise.
Abstract
This study uses NCEP–NCAR reanalysis data covering the boreal winters of 1958–97 to examine the power spectral, timescale, and climate noise properties of the dominant atmospheric teleconnection patterns. The patterns examined include the North Atlantic oscillation (NAO), the Pacific–North American (PNA), and west Pacific (WP) teleconnections, and a spatial pattern associated with ENSO. The teleconnection patterns are identified by applying a rotated principal component analysis to the daily unfiltered 300-mb geopotential height field. The NAO and PNA were found to be the two dominant patterns on all timescales.
The main finding is that the temporal evolution of the NAO, PNA, and WP teleconnections can be interpreted as being a stochastic (Markov) process with an e-folding timescale between 7.4 and 9.5 days. The time series corresponding to the ENSO spatial pattern did not match that of a Markov process, and thus a well-defined timescale could not be specified. The shortness of the above timescales indicates that the excitation of these teleconnection patterns is limited to a period of time less than a few days. These findings also suggest that in order to improve our understanding of the growth and decay mechanisms of teleconnection patterns, it is best to use daily, unfiltered data, rather than monthly or seasonally averaged data.
The signal (interannual variance due to external forcing) to noise (interannual variance from stochastic processes) ratios were also examined. For the NAO (PNA), the signal-to-noise ratio is 0.09 (1.11). This indicates that the interannual variability of the NAO (PNA) arises primarily from climate noise (both from climate noise and external forcing). An explanation for why the NAO and PNA dominate on interannual timescales is also presented.
Abstract
This study uses NCEP–NCAR reanalysis data covering the boreal winters of 1958–97 to examine the power spectral, timescale, and climate noise properties of the dominant atmospheric teleconnection patterns. The patterns examined include the North Atlantic oscillation (NAO), the Pacific–North American (PNA), and west Pacific (WP) teleconnections, and a spatial pattern associated with ENSO. The teleconnection patterns are identified by applying a rotated principal component analysis to the daily unfiltered 300-mb geopotential height field. The NAO and PNA were found to be the two dominant patterns on all timescales.
The main finding is that the temporal evolution of the NAO, PNA, and WP teleconnections can be interpreted as being a stochastic (Markov) process with an e-folding timescale between 7.4 and 9.5 days. The time series corresponding to the ENSO spatial pattern did not match that of a Markov process, and thus a well-defined timescale could not be specified. The shortness of the above timescales indicates that the excitation of these teleconnection patterns is limited to a period of time less than a few days. These findings also suggest that in order to improve our understanding of the growth and decay mechanisms of teleconnection patterns, it is best to use daily, unfiltered data, rather than monthly or seasonally averaged data.
The signal (interannual variance due to external forcing) to noise (interannual variance from stochastic processes) ratios were also examined. For the NAO (PNA), the signal-to-noise ratio is 0.09 (1.11). This indicates that the interannual variability of the NAO (PNA) arises primarily from climate noise (both from climate noise and external forcing). An explanation for why the NAO and PNA dominate on interannual timescales is also presented.
Abstract
This study examines whether both the trend and the increase in variance of the Northern Hemisphere winter annular mode during the past 30 years arise from atmospheric internal variability. To address this question, a synthetic time series is generated that has the same intraseasonal stochastic properties as the annular mode. By generating a distribution of linear trend values for the synthetic time series, and through a chi-square statistical analysis, it is shown that this trend and variance increase are well in excess of the level expected from internal variability of the atmosphere. This implies that both the trend and the variance increase of the annular mode are due either to coupling with the hydrosphere and/or cryosphere or to driving external to the climate system. This behavior contrasts that of the first 60 years of the twentieth century, for which it is shown that all of the interannual variability of the annular mode can be explained by atmospheric internal variability.
Abstract
This study examines whether both the trend and the increase in variance of the Northern Hemisphere winter annular mode during the past 30 years arise from atmospheric internal variability. To address this question, a synthetic time series is generated that has the same intraseasonal stochastic properties as the annular mode. By generating a distribution of linear trend values for the synthetic time series, and through a chi-square statistical analysis, it is shown that this trend and variance increase are well in excess of the level expected from internal variability of the atmosphere. This implies that both the trend and the variance increase of the annular mode are due either to coupling with the hydrosphere and/or cryosphere or to driving external to the climate system. This behavior contrasts that of the first 60 years of the twentieth century, for which it is shown that all of the interannual variability of the annular mode can be explained by atmospheric internal variability.
Abstract
Two-layer, quasi-geostrophic weakly nonlinear and low-order spectral models are developed and used to investigate the instability of forced baroclinic Rossby waves to finite-amplitude perturbations. The results are then applied to the interaction of planetary-scale stationary eddies with synoptic scale transient eddies.
In the weakly nonlinear model, asymptotic series expansions are used in conjunction with the method of multiple time scales. The stability of a forced planetary-scale stationary baroclinic Rossby wave to synoptic-scale perturbations is first examined. The synoptic-scale perturbation modes initially grow exponentially after which they eventually settle into an amplitude vacillation cycle. This vacillation is driven by the linear interference between propagating and stationary synoptic-scale modes with the same zonal and meridional wavenumbers. During this vacillation, the time mean energy of the stationary planetary wave equals its initial value. This indicates that the transient synoptic-scale perturbation has neither an amplifying nor a dissipative influence on the stationary wave. A study of the energetics shows that eddy available potential energy is transferred from the planetary-scale stationary wave to the synoptic-scale perturbation, while eddy kinetic energy is simultaneously transferred in the reverse direction.
The asymptotic series expansions are also used to determine the truncation for a fully nonlinear spectral model. The weakly nonlinear and spectral solutions are compared and are found to agree very well. In addition, by comparing spectral model solutions with and without the higher-order modes of the weakly nonlinear model present, it is found that the evolution of the basic wave and the perturbation are extremely sensitive to the presence of these modes. This suggests that the interaction between planetary-scale stationary eddies with synoptic-scale transient eddies is a nonlinear phenomenon that is very sensitive to the detailed structure of the eddies present.
Abstract
Two-layer, quasi-geostrophic weakly nonlinear and low-order spectral models are developed and used to investigate the instability of forced baroclinic Rossby waves to finite-amplitude perturbations. The results are then applied to the interaction of planetary-scale stationary eddies with synoptic scale transient eddies.
In the weakly nonlinear model, asymptotic series expansions are used in conjunction with the method of multiple time scales. The stability of a forced planetary-scale stationary baroclinic Rossby wave to synoptic-scale perturbations is first examined. The synoptic-scale perturbation modes initially grow exponentially after which they eventually settle into an amplitude vacillation cycle. This vacillation is driven by the linear interference between propagating and stationary synoptic-scale modes with the same zonal and meridional wavenumbers. During this vacillation, the time mean energy of the stationary planetary wave equals its initial value. This indicates that the transient synoptic-scale perturbation has neither an amplifying nor a dissipative influence on the stationary wave. A study of the energetics shows that eddy available potential energy is transferred from the planetary-scale stationary wave to the synoptic-scale perturbation, while eddy kinetic energy is simultaneously transferred in the reverse direction.
The asymptotic series expansions are also used to determine the truncation for a fully nonlinear spectral model. The weakly nonlinear and spectral solutions are compared and are found to agree very well. In addition, by comparing spectral model solutions with and without the higher-order modes of the weakly nonlinear model present, it is found that the evolution of the basic wave and the perturbation are extremely sensitive to the presence of these modes. This suggests that the interaction between planetary-scale stationary eddies with synoptic-scale transient eddies is a nonlinear phenomenon that is very sensitive to the detailed structure of the eddies present.