Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Steven V. Weijs x
  • Refine by Access: All Content x
Clear All Modify Search
Steven V. Weijs
and
Nick van de Giesen

Abstract

Recently, an information-theoretical decomposition of Kullback–Leibler divergence into uncertainty, reliability, and resolution was introduced. In this article, this decomposition is generalized to the case where the observation is uncertain. Along with a modified decomposition of the divergence score, a second measure, the cross-entropy score, is presented, which measures the estimated information loss with respect to the truth instead of relative to the uncertain observations. The difference between the two scores is equal to the average observational uncertainty and vanishes when observations are assumed to be perfect. Not acknowledging for observation uncertainty can lead to both overestimation and underestimation of forecast skill, depending on the nature of the noise process.

Full access
Steven V. Weijs
,
Ronald van Nooijen
, and
Nick van de Giesen

Abstract

This paper presents a score that can be used for evaluating probabilistic forecasts of multicategory events. The score is a reinterpretation of the logarithmic score or ignorance score, now formulated as the relative entropy or Kullback–Leibler divergence of the forecast distribution from the observation distribution. Using the information–theoretical concepts of entropy and relative entropy, a decomposition into three components is presented, analogous to the classic decomposition of the Brier score. The information–theoretical twins of the components uncertainty, resolution, and reliability provide diagnostic information about the quality of forecasts. The overall score measures the information conveyed by the forecast. As was shown recently, information theory provides a sound framework for forecast verification. The new decomposition, which has proven to be very useful for the Brier score and is widely used, can help acceptance of the logarithmic score in meteorology.

Full access