Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Steven Wanzong x
  • Refine by Access: All Content x
Clear All Modify Search
Wayne C. Bresky
,
Jaime M. Daniels
,
Andrew A. Bailey
, and
Steven T. Wanzong

Abstract

Comparisons between satellite-derived winds and collocated rawinsonde observations often show a pronounced slow speed bias at mid- and upper levels of the atmosphere. A leading cause of the slow speed bias is the improper assignment of the tracer to a height that is too high in the atmosphere. Height errors alone cannot fully explain the slow bias, however. Another factor influencing the speed bias is the size of the target window used in the tracking step. Tracking with a large target window can cause excessive averaging to occur and a smoothing of the instantaneous wind field. Conversely, if too small a window is specified, there is an increased risk of finding a false match. The authors have developed a new “nested tracking” approach that isolates the dominant local motion within a cloud scene and minimizes the smoothing of the motion estimate. A major advantage of the new approach is the ability to identify which pixels within the cloud scene are contributing to the tracking solution. Knowing which pixels contribute to the dominant motion allows for a more representative height to be derived, thereby directly linking the height assignment to the tracking process, which is an important goal for producers of global atmospheric motion vector (AMV) data. When compared with equivalent rawinsondes, the AMVs derived with the new approach show a considerable improvement in the speed bias and root-mean-square error over a control set of AMVs derived with more-conventional methods.

Full access
Christopher Velden
,
William E. Lewis
,
Wayne Bresky
,
David Stettner
,
Jaime Daniels
, and
Steven Wanzong

Abstract

It is well known that global numerical model analyses and forecasts benefit from the routine assimilation of atmospheric motion vectors (AMVs) derived from meteorological satellites. Recent studies have also shown that the assimilation of enhanced (spatial and temporal) AMVs can benefit research-mode regional model forecasts of tropical cyclone track and intensity. In this study, the impact of direct assimilation of enhanced (higher resolution) AMV datasets in the NCEP operational Hurricane Weather Research and Forecasting Model (HWRF) system is investigated. Forecasts of Atlantic tropical cyclone track and intensity are examined for impact by inclusion of enhanced AMVs via direct data assimilation. Experiments are conducted for AMVs derived using two methodologies (“HERITAGE” and “GOES-R”), and also for varying levels of quality control in order to assess and inform the optimization of the AMV assimilation process. Results are presented for three selected Atlantic tropical cyclone events and compared to Control forecasts without the enhanced AMVs as well as the corresponding operational HWRF forecasts. The findings indicate that the direct assimilation of high-resolution AMVs has an overall modest positive impact on HWRF forecasts, but the impact magnitudes are dependent on the 1) availability of rapid scan imagery used to produce the AMVs, 2) AMV derivation approach, 3) level of quality control employed in the assimilation, and 4) vortex initialization procedure (including the degree to which unbalanced states are allowed to enter the model analyses).

Full access
Andrew K. Heidinger
,
Nicholas Bearson
,
Michael J. Foster
,
Yue Li
,
Steve Wanzong
,
Steven Ackerman
,
Robert E. Holz
,
Steven Platnick
, and
Kerry Meyer

Abstract

Modern polar-orbiting meteorological satellites provide both imaging and sounding observations simultaneously. Most imagers, however, do not have H2O and CO2 absorption bands and therefore struggle to accurately estimate the height of optically thin cirrus clouds. Sounders provide these needed observations, but at a spatial resolution that is too coarse to resolve many important cloud structures. This paper presents a technique to merge sounder and imager observations with the goal of maintaining the details offered by the imager’s high spatial resolution and the accuracy offered by the sounder’s spectral information. The technique involves deriving cloud temperatures from the sounder observations, interpolating the sounder temperatures to the imager pixels, and using the sounder temperatures as an additional constraint in the imager cloud height optimal estimation approach. This technique is demonstrated using collocated VIIRS and Cross-track Infrared Sounder (CrIS) observations with the impact of the sounder observations validated using coincident CALIPSO/CALIOP cloud heights These comparisons show significant improvement in the cloud heights for optically thin cirrus. The technique should be generally applicable to other imager/sounder pairs.

Full access
Steven J. Nieman
,
W. Paul Menzei
,
Christopher M. Hayden
,
Donald Gray
,
Steven T. Wanzong
,
Christopher S. Velden
, and
Jaime Daniels

Cloud-drift winds have been produced from geostationary satellite data in the Western Hemisphere since the early 1970s. During the early years, winds were used as an aid for the short-term forecaster in an era when numerical forecasts were often of questionable quality, especially over oceanic regions. Increased computing resources over the last two decades have led to significant advances in the performance of numerical forecast models. As a result, continental forecasts now stand to gain little from the inspection or assimilation of cloud-drift wind fields. However, the oceanic data void remains, and although numerical forecasts in such areas have improved, they still suffer from a lack of in situ observations. During the same two decades, the quality of geostationary satellite data has improved considerably, and the cloud-drift wind production process has also benefited from increased computing power. As a result, fully automated wind production is now possible, yielding cloud-drift winds whose quality and quantity is sufficient to add useful information to numerical model forecasts in oceanic and coastal regions. This article will detail the automated cloud-drift wind production process, as operated by the National Environmental Satellite Data and Information Service within the National Oceanic and Atmospheric Administration.

Full access
Christopher S. Velden
,
Christopher M. Hayden
,
Steven J W. Nieman
,
W. Paul Menzel
,
Steven Wanzong
, and
James S. Goerss

The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

Full access