Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Stevens T. Chan x
  • Refine by Access: All Content x
Clear All Modify Search
Stevens T. Chan
and
Martin J. Leach

Abstract

Under the sponsorship of the U.S. Department of Energy and U.S. Department of Homeland Security, a computational fluid dynamics (CFD) model for simulating airflow and dispersion of chemical/biological agents released in urban areas has recently been developed. This model, the Finite Element Model in 3-Dimensions and Massively Parallelized (FEM3MP), is based on solving the three-dimensional, time-dependent Navier–Stokes equations with appropriate physics submodels on massively parallel computer platforms. It employs finite-element discretization for effective treatment of complex geometries and a semi-implicit projection scheme for efficient time integration. A simplified CFD approach, using both explicitly resolved and virtual buildings, was implemented to improve further the model’s efficiency. Results from our model are continuously being verified against measured data from wind-tunnel and field studies. Herein, this model is further evaluated using observed data from intensive operation periods (IOP) 3 and 9 of the Joint Urban 2003 field study conducted in Oklahoma City, Oklahoma, in July 2003. The model simulations of wind and concentration fields in the near and intermediate regions, as well as profiles of wind speed, wind direction, friction velocity, and turbulent kinetic energy (TKE) in the urban wake region, are generally consistent with and compared reasonably well to field observations. In addition, this model was able to reproduce the observed split plume of IOP 3 and the end vortices along Park Avenue in IOP 9. The dispersion results and TKE profiles at the crane station indicate that the effects of convective mixing are relatively important for the daytime release of IOP 3 but that the stable effects are relatively unimportant for the nighttime release of IOP 9. Results of this study also suggest that the simplified CFD approach implemented in FEM3MP can be a cost-effective tool for simulating urban dispersion problems.

Full access
Julie K. Lundquist
and
Stevens T. Chan

Abstract

The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint Urban 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods (IOPs), are simulated using the building-resolving computational fluid dynamics model called the Finite Element Model in 3-Dimensions and Massively Parallelized (FEM3MP) to solve the Reynolds-averaged Navier–Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a nonlinear eddy viscosity (NEV) approach, and the other considers buoyancy effects with a simple linear eddy viscosity approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district in the area labeled as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well to the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To explore further the assumption of a neutrally stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the urban shadow are examined. Dissipation and shear production are the largest terms that may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely; for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as 7 times average upwind values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, whereas the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, farther downwind in the urban wake region, which is found to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, Oklahoma, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid.

Full access
Steven E. Gaines
,
Stuart W. Bowen
,
R. Stephen Hipskind
,
T. Paul Bui
, and
K. Roland Chan

Abstract

Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent measurements of these quantities from radiosondes and radar tracking of both the ER-2 and radiosonde balloons. In general, the comparisons were good and within the expected measurement accuracy and natural variability of the meteorological parameters.

Radar tracking of the ER-2 resolved the velocity and position drift of the inertial navigation system (INS). The rms errors in the horizontal velocity components of the ER-2, due to INS errors, were found to be 0.5 m s−1. The magnitude of the drift in longitude and latitude depends on the sign and magnitude of the corresponding component velocity drift and can be a few hundredths of a degree.

The radar altitudes of the ER-2 and radiosondes were used as the basis for comparing measurements of atmospheric pressure, temperature, and horizontal wind from these two platforms. The uncertainty in the MMS horizontal wind measurement is estimated to be ±2.5 m s−1. The accuracy of the MMS pressure and temperature measurements were inferred to be ±0.3 hPa and ±0.3 K.

Full access
Steven C. Chan
,
Elizabeth J. Kendon
,
Hayley J. Fowler
,
Stephen Blenkinsop
,
Nigel M. Roberts
, and
Christopher A. T. Ferro

Abstract

Extreme value theory is used as a diagnostic for two high-resolution (12-km parameterized convection and 1.5-km explicit convection) Met Office regional climate model (RCM) simulations. On subdaily time scales, the 12-km simulation has weaker June–August (JJA) short-return-period return levels than the 1.5-km RCM, yet the 12-km RCM has overly large high return levels. Comparisons with observations indicate that the 1.5-km RCM is more successful than the 12-km RCM in representing (multi)hourly JJA very extreme events. As accumulation periods increase toward daily time scales, the erroneous 12-km precipitation extremes become more comparable with the observations and the 1.5-km RCM. The 12-km RCM fails to capture the observed low sensitivity of the growth rate to accumulation period changes, which is successfully captured by the 1.5-km RCM. Both simulations have comparable December–February (DJF) extremes, but the DJF extremes are generally weaker than in JJA at daily or shorter time scales. Case studies indicate that “gridpoint storms” are one of the causes of unrealistic very extreme events in the 12-km RCM. Caution is needed in interpreting the realism of 12-km RCM JJA extremes, including short-return-period events, which have return values closer to observations. There is clear evidence that the 1.5-km RCM has a higher degree of realism than the 12-km RCM in the simulation of JJA extremes.

Full access
Steven R. Hanna
,
Michael J. Brown
,
Fernando E. Camelli
,
Stevens T. Chan
,
William J. Coirier
,
Olav R. Hansen
,
Alan H. Huber
,
Sura Kim
, and
R. Michael Reynolds

Computational fluid dynamics (CFD) model simulations of urban boundary layers have improved in speed and accuracy so that they are useful in assisting in planning emergency response activities related to releases of chemical or biological agents into the atmosphere in large cities such as New York, New York. In this paper, five CFD models [CFD-Urban, Finite Element Flow (FEFLO), Finite Element Model in 3D and Massively-Parallel version (FEM3MP), FLACS, and FLUENT–Environmental Protection Agency (FLUENT-EPA)] have been applied to the same 3D building data and geographic domain in Manhattan, using approximately the same wind input conditions. Wind flow observations are available from the Madison Square Garden 2005 (MSG05) field experiment. Plots of the CFD models' simulations and the observations of near-surface wind fields lead to the qualitative conclusion that the models generally agree with each other and with field observations over most parts of the computational domain, within typical atmospheric uncertainties of a factor of 2. The results are useful to emergency responders, suggesting, for example, that transport of a release at street level in a large city could extend for a few blocks in the upwind and crosswind directions. There are still key differences among the models for certain parts of the domain. Further examination of the differences among the models and the observations are necessary in order to understand the causal relationships.

Full access
G. C Johnson
,
R Lumpkin
,
C Atkinson
,
Tiago Biló
,
Tim Boyer
,
Francis Bringas
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Lijing Cheng
,
Leah Chomiak
,
Meghan F. Cronin
,
Shenfu Dong
,
Richard A. Feely
,
Bryan A. Franz
,
Meng Gao
,
Jay Garg
,
John Gilson
,
Gustavo Goni
,
Benjamin D. Hamlington
,
W. Hobbs
,
Zeng-Zhen Hu
,
Boyin Huang
,
Masayoshi Ishii
,
Svetlana Jevrejeva
,
W. Johns
,
Peter Landschützer
,
Matthias Lankhorst
,
Eric Leuliette
,
Ricardo Locarnini
,
John M. Lyman
,
Michael J. McPhaden
,
Mark A. Merrifield
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Ivan Mrekaj
,
R. Steven Nerem
,
Sarah G. Purkey
,
Bo Qiu
,
James Reagan
,
Katsunari Sato
,
Claudia Schmid
,
Jonathan D. Sharp
,
David A. Siegel
,
David A. Smeed
,
Paul W. Stackhouse Jr.
,
William Sweet
,
Philip R. Thompson
,
Joaquin A. Triñanes
,
Denis L. Volkov
,
Rik Wanninkhof
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
J. Willis
,
Ping-Ping Xie
,
Xungang Yin
,
Huai-min Zhang
,
Li Zhang
,
Jessicca Allen
,
Amy V. Camper
,
Bridgette O. Haley
,
Gregory Hammer
,
S. Elizabeth Love-Brotak
,
Laura Ohlmann
,
Lukas Noguchi
,
Deborah B. Riddle
, and
Sara W. Veasey
Open access
Tim Boyer
,
Ellen Bartow-Gillies
,
A. Abida
,
Melanie Ades
,
Robert Adler
,
Susheel Adusumilli
,
W. Agyakwah
,
Brandon Ahmasuk
,
Laura S. Aldeco
,
Mihai Alexe
,
Eric J. Alfaro
,
Richard P. Allan
,
Adam Allgood
,
Lincoln. M. Alves
,
Jorge A. Amador
,
John Anderson
,
B. Andrade
,
Orlane Anneville
,
Yasuyuki Aono
,
Anthony Arguez
,
Carlo Arosio
,
C. Atkinson
,
John A. Augustine
,
Grinia Avalos
,
Cesar Azorin-Molina
,
Stacia A. Backensto
,
Stephan Bader
,
Julian Baez
,
Rebecca Baiman
,
Thomas J. Ballinger
,
Alison F. Banwell
,
M. Yu Bardin
,
Jonathan Barichivich
,
John E. Barnes
,
Sandra Barreira
,
Rebecca L. Beadling
,
Hylke E. Beck
,
Emily J. Becker
,
E. Bekele
,
Guillem Martín Bellido
,
Nicolas Bellouin
,
Angela Benedetti
,
Rasmus Benestad
,
Christine Berne
,
Logan. T. Berner
,
Germar H. Bernhard
,
Uma S. Bhatt
,
A. E. Bhuiyan
,
Siiri Bigalke
,
Tiago Biló
,
Peter Bissolli
,
W. Bjerke Jarle
,
Kevin Blagrave
,
Eric S. Blake
,
Stephen Blenkinsop
,
Jessica Blunden
,
Oliver Bochníček
,
Olivier Bock
,
Xavier Bodin
,
Michael Bosilovich
,
Olivier Boucher
,
Deniz Bozkurt
,
Brian Brettschneider
,
Francis G. Bringas
,
Francis Bringas
,
Dennis Buechler
,
Stefan A. Buehler
,
Brandon Bukunt
,
Blanca Calderón
,
Suzana J. Camargo
,
Jayaka Campbell
,
Diego Campos
,
Laura Carrea
,
Brendan R. Carter
,
Ivona Cetinić
,
Don P. Chambers
,
Duo Chan
,
Elise Chandler
,
Kai-Lan Chang
,
Hua Chen
,
Lin Chen
,
Lijing Cheng
,
Vincent Y. S. Cheng
,
Leah Chomiak
,
Hanne H. Christiansen
,
John R. Christy
,
Eui-Seok Chung
,
Laura M. Ciasto
,
Leonardo Clarke
,
Kyle R. Clem
,
Scott Clingan
,
Caio A.S. Coelho
,
Judah L. Cohen
,
Melanie Coldewey-Egbers
,
Steve Colwell
,
Owen R. Cooper
,
Richard C. Cornes
,
Kris Correa
,
Felipe Costa
,
Curt Covey
,
Lawrence Coy
,
Jean-François Créatux
,
Lenka Crhova
,
Theresa Crimmins
,
Meghan F. Cronin
,
Thomas Cropper
,
Molly Crotwell
,
Joshua Culpepper
,
Ana P. Cunha
,
Diego Cusicanqui
,
Rajashree T. Datta
,
Sean M. Davis
,
Veerle De Bock
,
Richard A. M. de Jeu
,
Jos De Laat
,
Bertrand Decharme
,
Doug Degenstein
,
Reynald Delaloye
,
Mesut Demircan
,
Chris Derksen
,
Ricardo Deus
,
K. R. Dhurmea
,
Howard J. Diamond
,
S. Dirkse
,
Dmitry Divine
,
Martin T. Dokulil
,
Markus G. Donat
,
Shenfu Dong
,
Wouter A. Dorigo
,
Caroline Drost Jensen
,
Matthew L. Druckenmiller
,
Paula Drumond
,
Marcel du Plessis
,
Hilary A. Dugan
,
Dashkhuu Dulamsuren
,
Devon Dunmire
,
Robert J. H. Dunn
,
Imke Durre
,
Geoff Dutton
,
Gregory Duveiller
,
Mithat Ekici
,
Alesksandra Elias Chereque
,
M. ElKharrim
,
Howard E. Epstein
,
Jhan-Carlo Espinoza
,
Thomas W. Estilow
,
Nicole Estrella
,
Nicolas Fauchereau
,
Robert S. Fausto
,
Richard A. Feely
,
Chris Fenimore
,
David Fereday
,
Xavier Fettweis
,
vitali E. Fioletov
,
Johannes Flemming
,
Chris Fogarty
,
Ryan L. Fogt
,
Bruce C. Forbes
,
Michael J. Foster
,
Bryan A. Franz
,
Natalie M. Freeman
,
Helen A. Fricker
,
Stacey M. Frith
,
Lucien Froidevaux
,
(JJ)
,
Steven Fuhrman
,
Martin Füllekrug
,
Catherine Ganter
,
Meng Gao
,
Alex S. Gardner
,
Judith Garforth
,
Jay Garg
,
Sebastian Gerland
,
Badin Gibbes
,
Sarah T. Gille
,
John Gilson
,
Karin Gleason
,
Nadine Gobron
,
Scott J. Goetz
,
Stanley B. Goldenberg
,
Gustavo Goni
,
Steven Goodman
,
Atsushi Goto
,
Jens-Uwe Grooß
,
Alexander Gruber
,
Guojun Gu
,
Charles “Chip” P. Guard
,
S. Hagos
,
Sebastian Hahn
,
Leopold Haimberger
,
Bradley D. Hall
,
Benjamin D. Hamlington
,
Edward Hanna
,
Inger Hanssen-Bauer
,
Daniel S. Harnos
,
Ian Harris
,
Qiong He
,
Richard R. Heim Jr.
,
Sverker Hellström
,
Deborah L. Hemming
,
Stefan Hendricks
,
J. Hicks
,
Hugo G. Hidalgo
,
Martin Hirschi
,
(Ben)
,
W. Hobbs
,
Robert M. Holmes
,
Robert Holzworth
,
Filip Hrbáček
,
Guojie Hu
,
Zeng-Zhen Hu
,
Boyin Huang
,
Hongjie Huang
,
Dale F. Hurst
,
Iolanda Ialongo
,
Antje Inness
,
Ketil Isaksen
,
Masayoshi Ishii
,
Gerardo Jadra
,
Svetlana Jevrejeva
,
Viju O. John
,
W. Johns
,
Bjørn Johnsen
,
Bryan Johnson
,
Gregory C. Johnson
,
Philip D. Jones
,
Timothy Jones
,
Simon A. Josey
,
G. Jumaux
,
Robert Junod
,
Andreas Kääb
,
K. Kabidi
,
Johannes W. Kaiser
,
Robb S.A. Kaler
,
Lars Kaleschke
,
Viktor Kaufmann
,
Amin Fazl Kazemi
,
Linda M. Keller
,
Andreas Kellerer-Pirklbauer
,
Mike Kendon
,
John Kennedy
,
Elizabeth C. Kent
,
Kenneth Kerr
,
Valentina Khan
,
Mai Van Khiem
,
Richard Kidd
,
Mi Ju Kim
,
Seong-Joong Kim
,
Zak Kipling
,
Philip J. Klotzbach
,
John A. Knaff
,
Akash Koppa
,
Natalia N. Korshunova
,
Benjamin M. Kraemer
,
Natalya A. Kramarova
,
A. C. Kruger
,
Andries Kruger
,
Arun Kumar
,
Michelle L’Heureux
,
Sofia La Fuente
,
Alo Laas
,
Zachary M. Labe
,
Rick Lader
,
Mónika Lakatos
,
Kaisa Lakkala
,
Hoang Phuc Lam
,
Xin Lan
,
Peter Landschützer
,
Chris W. Landsea
,
Timothy Lang
,
Matthias Lankhorst
,
Kathleen O. Lantz
,
Mark J. Lara
,
Waldo Lavado-Casimiro
,
David A. Lavers
,
Matthew A. Lazzara
,
Thierry Leblanc
,
Tsz-Cheung Lee
,
Eric M. Leibensperger
,
Chris Lennard
,
Eric Leuliette
,
Kinson H. Y. Leung
,
Jan L. Lieser
,
Tanja Likso
,
I-I. Lin
,
Jackie Lindsey
,
Yakun Liu
,
Ricardo Locarnini
,
Norman G. Loeb
,
Bryant D. Loomis
,
Andrew M. Lorrey
,
Diego Loyola
,
Rui Lu
,
Rick Lumpkin
,
Jing-Jia Luo
,
Kari Luojus
,
John M. Lyman
,
Stephen C. Maberly
,
Matthew J. Macander
,
Michael MacFerrin
,
Graeme A. MacGilchrist
,
Michelle L. MacLennan
,
Remi Madelon
,
Andrew D. Magee
,
Florence Magnin
,
Jostein Mamen
,
Ken D. Mankoff
,
Gloria L. Manney
,
Izolda Marcinonienė
,
Jose A. Marengo
,
Mohammadi Marjan
,
Ana E. Martínez
,
Robert A. Massom
,
Shin-Ichiro Matsuzaki
,
Linda May
,
Michael Mayer
,
Matthew R. Mazloff
,
Stephanie A. McAfee
,
C. McBride
,
Matthew F. McCabe
,
James W. McClelland
,
Michael J. McPhaden
,
Tim R. Mcvicar
,
Carl A. Mears
,
Walter N. Meier
,
A. Mekonnen
,
Annette Menzel
,
Christopher J. Merchant
,
Mark A. Merrifield
,
Michael F. Meyer
,
Tristan Meyers
,
David E. Mikolajczyk
,
John B. Miller
,
Diego G. Miralles
,
Noelia Misevicius
,
Alexey Mishonov
,
Gary T. Mitchum
,
Ben I. Moat
,
Leander Moesinger
,
Aurel Moise
,
Jorge Molina-Carpio
,
Ghislaine Monet
,
Stephan A. Montzka
,
Twila A. Moon
,
G. W. K. Moore
,
Natali Mora
,
Johnny Morán
,
Claire Morehen
,
Colin Morice
,
A. E. Mostafa
,
Thomas L. Mote
,
Ivan Mrekaj
,
Lawrence Mudryk
,
Jens Mühle
,
Rolf Müller
,
David Nance
,
Eric R. Nash
,
R. Steven Nerem
,
Paul A. Newman
,
Julien P. Nicolas
,
Juan J. Nieto
,
Jeannette Noetzli
,
Ben Noll
,
Taylor Norton
,
Kelsey E. Nyland
,
John O’Keefe
,
Naomi Ochwat
,
Yoshinori Oikawa
,
Yuka Okunaka
,
Timothy J. Osborn
,
James E. Overland
,
Taejin Park
,
Mark Parrington
,
Julia K. Parrish
,
Richard J. Pasch
,
Reynaldo Pascual Ramírez
,
Cécile Pellet
,
Mauri S. Pelto
,
Melita Perčec Tadić
,
Donald K. Perovich
,
Guðrún Nína Petersen
,
Kyle Petersen
,
Irina Petropavlovskikh
,
Alek Petty
,
Alexandre B. Pezza
,
Luciano P. Pezzi
,
Coda Phillips
,
Gareth K. Phoenix
,
Don Pierson
,
Izidine Pinto
,
Vanda Pires
,
Michael Pitts
,
Stephen Po-Chedley
,
Paolo Pogliotti
,
Kristin Poinar
,
Lorenzo Polvani
,
Wolfgang Preimesberger
,
Colin Price
,
Merja Pulkkanen
,
Sarah G. Purkey
,
Bo Qiu
,
Kenny Quisbert
,
Willy R. Quispe
,
M. Rajeevan
,
Andrea M. Ramos
,
William J. Randel
,
Mika Rantanen
,
Marilyn N. Raphael
,
James Reagan
,
Cristina Recalde
,
Phillip Reid
,
Samuel Rémy
,
Alejandra J. Reyes Kohler
,
Lucrezia Ricciardulli
,
Andrew D. Richardson
,
Robert Ricker
,
David A. Robinson
,
M. Robjhon
,
Willy Rocha
,
Matthew Rodell
,
Esteban Rodriguez Guisado
,
Nemesio Rodriguez-Fernandez
,
Vladimir E. Romanovsky
,
Josyane Ronchail
,
Matthew Rosencrans
,
Karen H. Rosenlof
,
Benjamin Rösner
,
Henrieke Rösner
,
Alexei Rozanov
,
Jozef Rozkošný
,
Frans Rubek
,
Olga O. Rusanovskaya
,
This Rutishauser
,
C. T. Sabeerali
,
Roberto Salinas
,
Ahira Sánchez-Lugo
,
Michelle L. Santee
,
Marcelo Santini
,
Katsunari Sato
,
Parnchai Sawaengphokhai
,
A. Sayouri
,
Theodore Scambos
,
Verena Schenzinger
,
Semjon Schimanke
,
Robert W. Schlegel
,
Claudia Schmid
,
Martin Schmid
,
Udo Schneider
,
Carl J. Schreck
,
Cristina Schultz
,
Science Systems and Applications Inc. Science Systems and Applications Inc.
,
Z. T. Segele
,
Serhat Sensoy
,
Shawn P. Serbin
,
Mark C. Serreze
,
Amsari Mudzakir Setiawan
,
Fumi Sezaki
,
Sapna Sharma
,
Jonathan D. Sharp
,
Gay Sheffield
,
Jia-Rui Shi
,
Lei Shi
,
Alexander I. Shiklomanov
,
Nikolay I. Shiklomanov
,
Svetlana V. Shimaraeva
,
R. Shukla
,
David A. Siegel
,
Eugene A. Silow
,
F. Sima
,
Adrian J. Simmons
,
David A. Smeed
,
Adam Smith
,
Sharon L. Smith
,
Brian J. Soden
,
Viktoria Sofieva
,
Everaldo Souza
,
Tim H. Sparks
,
Jacqueline Spence-Hemmings
,
Robert G. M. Spencer
,
Sandra Spillane
,
O. P. Sreejith
,
A. K. Srivastava
,
Paul W. Stackhouse Jr.
,
Sharon Stammerjohn
,
Ryan Stauffer
,
Wolfgang Steinbrecht
,
Andrea K. Steiner
,
Jose L. Stella
,
Tannecia S. Stephenson
,
Pietro Stradiotti
,
Susan E. Strahan
,
Dmitry A. Streletskiy
,
Divya E. Surendran
,
Anya Suslova
,
Tove Svendby
,
William Sweet
,
Kiyotoshi Takahashi
,
Kazuto Takemura
,
Suzanne E. Tank
,
Michael A. Taylor
,
Marco Tedesco
,
Stephen J. Thackeray
,
W. M. Thiaw
,
Emmanuel Thibert
,
Richard L. Thoman
,
Andrew F. Thompson
,
Philip R. Thompson
,
Xiangshan Tian-Kunze
,
Mary-Louise Timmermans
,
Maxim A. Timofeyev
,
Skie Tobin
,
Hans Tømmervik
,
Kleareti Tourpali
,
Lidia Trescilo
,
Mikhail Tretiakov
,
Blair C. Trewin
,
Joaquin A. Triñanes
,
Adrian Trotman
,
Ryan E. Truchelut
,
Luke D. Trusel
,
Mari R. Tye
,
Ronald van der A
,
Robin van der Schalie
,
Gerard van der Schrier
,
Cedric J. Van Meerbeeck
,
Arnold J.H. van vliet
,
Ahad Vazife
,
Piet Verburg
,
Jean-Paul Vernier
,
Isaac J. Vimont
,
Katrina Virts
,
Sebastián Vivero
,
Denis L. Volkov
,
Holger Vömel
,
Russell S. Vose
,
(Skip)
,
John E. Walsh
,
Bin Wang
,
Hui Wang
,
Muyin Wang
,
Ray H. J. Wang
,
Xinyue Wang
,
Rik Wanninkhof
,
Taran Warnock
,
Mark Weber
,
Melinda Webster
,
Adrian Wehrlé
,
Caihong Wen
,
Toby K. Westberry
,
Matthew J. Widlansky
,
David N. Wiese
,
Jeannette D. Wild
,
Jonathan D. Wille
,
An Willems
,
Kate M. Willett
,
Earle Williams
,
J. Willis
,
Takmeng Wong
,
Kimberly M. Wood
,
Richard Iestyn Woolway
,
Ping-Ping Xie
,
Dedi Yang
,
Xungang Yin
,
Ziqi Yin
,
Zhenzhong Zeng
,
Huai-min Zhang
,
Li Zhang
,
Peiqun Zhang
,
Lin Zhao
,
Xinjia Zhou
,
Zhiwei Zhu
,
Jerry R. Ziemke
,
Markus Ziese
,
Scott Zolkos
,
Ruxandra M. Zotta
,
Cheng-Zhi Zou
,
Jessicca Allen
,
Amy V. Camper
,
Bridgette O. Haley
,
Gregory Hammer
,
S. Elizabeth Love-Brotak
,
Laura Ohlmann
,
Lukas Noguchi
,
Deborah B. Riddle
, and
Sara W. Veasey

Abstract

—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES

Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.

In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.

Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.

While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.

The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.

In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.

In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.

Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.

A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.

As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.

In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.

On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.

Open access