Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Sue Grimmond x
- Refine by Access: All Content x
Abstract
The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to ∼2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by ∼1 K); however, maximum temperatures increased by ∼2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.
Abstract
The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to ∼2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by ∼1 K); however, maximum temperatures increased by ∼2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.
Abstract
Urban heat island (UHI) and sea–land-breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local-scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting Model with a single-layer urban canopy model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea-breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4 h and is strongest between 1200 and 1400 local time (UTC + 8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion, and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20 km/∼1.5 km/∼3 h) with thermal vertical motions (∼1.5 m s−1) above the urban area and an SBC (horizontal/vertical/time scales: 6–7 km/∼1 km/2–3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summertime urban heating in coastal megacities, such as Shanghai.
Abstract
Urban heat island (UHI) and sea–land-breeze systems are well-known and important characteristics of the climate of coastal cities. To model these, the accurate estimation of the surface energy balance (SEB) is a key factor needed to improve local-scale simulations of thermodynamic and dynamic boundary circulations. The Weather Research and Forecasting Model with a single-layer urban canopy model (WRF/SLUCM), with parameters derived from MODIS and local GIS information, is used to investigate the UHI and sea-breeze circulations (SBC) in the megacity of Shanghai. The WRF/SLUCM can reproduce observed urban radiation and SEB fluxes, near-surface meteorological variables, and the evolution of the UHI and SBC. Simulations for an August period show the maximum UHI tends to drift northwest in the afternoon, driven by the prevailing southeast wind. The sea breeze lasts for about 4 h and is strongest between 1200 and 1400 local time (UTC + 8 h). The interaction between UHI and SBC is evident with low-level convergence, upward motion, and moisture transport from the sea and urban breezes simulated. An urban circulation (horizontal/vertical/time scales: ∼20 km/∼1.5 km/∼3 h) with thermal vertical motions (∼1.5 m s−1) above the urban area and an SBC (horizontal/vertical/time scales: 6–7 km/∼1 km/2–3-h) above the northern coastal suburb occur. Combined the sea breeze and southerly winds form a low-level wind shear (convergence zone) ∼5 km from the coast that penetrates ∼20 km inland to the urban center. Using the WRF/SLUCM simulations we improve understanding of the complex spatial dynamics of summertime urban heating in coastal megacities, such as Shanghai.
The U.S. Weather Research Program convenes expert working groups on a one-time basis to identify critical research needs in various problem areas. The most recent expert working group was charged to “identify and delineate critical meteorological research issues related to the prediction of air quality.” In this context, “prediction” is denoted as “forecasting” and includes the depiction and communication of the present chemical state of the atmosphere, extrapolation or nowcasting, and numerical prediction and chemical evolution on time scales up to several days. Emphasis is on the meteorological aspects of air quality.
The problem of air quality forecasting is different in many ways from the problem of weather forecasting. The latter typically is focused on prediction of severe, adverse weather conditions, while the meteorology of adverse air quality conditions frequently is associated with benign weather. Boundary layer structure and wind direction are perhaps the two most poorly determined meteorological variables for regional air quality prediction. Meteorological observations are critical to effective air quality prediction, yet meteorological observing systems are designed to support prediction of severe weather, not the subtleties of adverse air quality. Three-dimensional meteorological and chemical observations and advanced data assimilation schemes are essential. In the same way, it is important to develop high-resolution and self-consistent databases for air quality modeling; these databases should include land use, vegetation, terrain elevation, and building morphology information, among others. New work in the area of chemically adaptive grids offers significant promise and should be pursued. The quantification and effective communication of forecast uncertainty are still in their early stages and are very important for decision makers; this also includes the visualization of air quality and meteorological observations and forecasts. Research is also needed to develop effective metrics for the evaluation and verification of air quality forecasts so that users can understand the strengths and weaknesses of various modeling schemes. Last, but not of least importance, is the need to consider the societal impacts of air quality forecasts and the needs that they impose on researchers to develop effective and useful products.
The U.S. Weather Research Program convenes expert working groups on a one-time basis to identify critical research needs in various problem areas. The most recent expert working group was charged to “identify and delineate critical meteorological research issues related to the prediction of air quality.” In this context, “prediction” is denoted as “forecasting” and includes the depiction and communication of the present chemical state of the atmosphere, extrapolation or nowcasting, and numerical prediction and chemical evolution on time scales up to several days. Emphasis is on the meteorological aspects of air quality.
The problem of air quality forecasting is different in many ways from the problem of weather forecasting. The latter typically is focused on prediction of severe, adverse weather conditions, while the meteorology of adverse air quality conditions frequently is associated with benign weather. Boundary layer structure and wind direction are perhaps the two most poorly determined meteorological variables for regional air quality prediction. Meteorological observations are critical to effective air quality prediction, yet meteorological observing systems are designed to support prediction of severe weather, not the subtleties of adverse air quality. Three-dimensional meteorological and chemical observations and advanced data assimilation schemes are essential. In the same way, it is important to develop high-resolution and self-consistent databases for air quality modeling; these databases should include land use, vegetation, terrain elevation, and building morphology information, among others. New work in the area of chemically adaptive grids offers significant promise and should be pursued. The quantification and effective communication of forecast uncertainty are still in their early stages and are very important for decision makers; this also includes the visualization of air quality and meteorological observations and forecasts. Research is also needed to develop effective metrics for the evaluation and verification of air quality forecasts so that users can understand the strengths and weaknesses of various modeling schemes. Last, but not of least importance, is the need to consider the societal impacts of air quality forecasts and the needs that they impose on researchers to develop effective and useful products.