Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sujan Koirala x
  • Refine by Access: All Content x
Clear All Modify Search
Yadu Pokhrel, Naota Hanasaki, Sujan Koirala, Jaeil Cho, Pat J.-F. Yeh, Hyungjun Kim, Shinjiro Kanae, and Taikan Oki

Abstract

Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively few studies have attempted to simulate the impacts of anthropogenic activities on the terrestrial water cycle using the framework of LSMs. From the comparison of simulated terrestrial water storage with the Gravity Recovery and Climate Experiment (GRACE) satellite observations it is found that a process-based LSM, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), outperforms the bucket-model-based GHM called H08 in simulating hydrologic variables, particularly in water-limited regions. Therefore, the water regulation modules of H08 are incorporated into MATSIRO. Further, a new irrigation scheme based on the soil moisture deficit is developed. Incorporation of anthropogenic water regulation modules significantly improves river discharge simulation in the heavily regulated global river basins. Simulated irrigation water withdrawal for the year 2000 (2462 km3 yr−1) agrees well with the estimates provided by the Food and Agriculture Organization (FAO). Results indicate that irrigation changes surface energy balance, causing a maximum increase of ~50 W m−2 in latent heat flux averaged over June–August. Moreover, unsustainable anthropogenic water use in 2000 is estimated to be ~450 km3 yr−1, which corresponds well with documented records of groundwater overdraft, representing an encouraging improvement over the previous modeling studies. Globally, unsustainable water use accounts for ~40% of blue water used for irrigation. The representation of anthropogenic activities in MATSIRO makes the model a suitable tool for assessing potential anthropogenic impacts on global water resources and hydrology.

Full access
Lukas Gudmundsson, Lena M. Tallaksen, Kerstin Stahl, Douglas B. Clark, Egon Dumont, Stefan Hagemann, Nathalie Bertrand, Dieter Gerten, Jens Heinke, Naota Hanasaki, Frank Voss, and Sujan Koirala

Abstract

Large-scale hydrological models describing the terrestrial water balance at continental and global scales are increasingly being used in earth system modeling and climate impact assessments. However, because of incomplete process understanding and limits of the forcing data, model simulations remain uncertain. To quantify this uncertainty a multimodel ensemble of nine large-scale hydrological models was compared to observed runoff from 426 small catchments in Europe. The ensemble was built within the framework of the European Union Water and Global Change (WATCH) project. The models were driven with the same atmospheric forcing data. Models were evaluated with respect to their ability to capture the interannual variability of spatially aggregated annual time series of five runoff percentiles—derived from daily time series—including annual low and high flows. Overall, the models capture the interannual variability of low, mean, and high flows well. However, errors in the mean and standard deviation, as well as differences in performance between the models, became increasingly pronounced for low runoff percentiles, reflecting the uncertainty associated with the representation of hydrological processes, such as the depletion of soil moisture stores. The large spread in model performance implies that any single model should be applied with caution as there is a great risk of biased conclusions. However, this large spread is contrasted by the good overall performance of the ensemble mean. It is concluded that the ensemble mean is a pragmatic and reliable estimator of spatially aggregated time series of annual low, mean, and high flows across Europe.

Full access
Ingjerd Haddeland, Douglas B. Clark, Wietse Franssen, Fulco Ludwig, Frank Voß, Nigel W. Arnell, Nathalie Bertrand, Martin Best, Sonja Folwell, Dieter Gerten, Sandra Gomes, Simon N. Gosling, Stefan Hagemann, Naota Hanasaki, Richard Harding, Jens Heinke, Pavel Kabat, Sujan Koirala, Taikan Oki, Jan Polcher, Tobias Stacke, Pedro Viterbo, Graham P. Weedon, and Pat Yeh

Abstract

Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.5° spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr−1 (from 60 000 to 85 000 km3 yr−1), and simulated runoff ranges from 290 to 457 mm yr−1 (from 42 000 to 66 000 km3 yr−1). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degree-day approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact models).

Full access