Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Sujay V. Kumar x
  • All content x
Clear All Modify Search
Sujay V. Kumar, Christa D. Peters-Lidard, Kristi R. Arsenault, Augusto Getirana, David Mocko, and Yuqiong Liu

Abstract

Accurate determination of snow conditions is important for several water management applications, partly because of the significant influence of snowmelt on seasonal streamflow prediction. This article examines an approach using snow cover area (SCA) observations as snow detection constraints during the assimilation of snow depth retrievals from passive microwave sensors. Two different SCA products [the Interactive Multisensor Snow and Ice Mapping System (IMS) and the Moderate Resolution Imaging Spectroradiometer (MODIS)] are employed jointly with the snow depth retrievals from a variety of sensors for data assimilation in the Noah land surface model. The results indicate that the use of MODIS data is effective in obtaining added improvements (up to 6% improvement in aggregate RMSE) in snow depth fields compared to assimilating passive microwave data alone, whereas the impact of IMS data is small. The improvements in snow depth fields are also found to translate to small yet systematic improvements in streamflow estimates, especially over the western United States, the upper Missouri River, and parts of the Northeast and upper Mississippi River. This study thus demonstrates a simple approach for exploiting the information from SCA observations in data assimilation.

Full access
David M. Mocko, Sujay V. Kumar, Christa D. Peters-Lidard, and Shugong Wang

Abstract

This study presents an evaluation of the impact of vegetation conditions on a land-surface model (LSM) simulation of agricultural drought. The Noah-MP LSM is used to simulate water and energy fluxes and states, which are transformed into drought categories using percentiles over the continental U.S. from 1979 to 2017. Leaf Area Index (LAI) observations are assimilated into the dynamic vegetation scheme of Noah-MP. A weekly operational drought monitor (the U.S. Drought Monitor) is used for the evaluation. The results show that LAI assimilation into Noah-MP’s dynamic vegetation scheme improves the model's ability to represent drought, particularly over cropland areas. LAI assimilation improves the simulation of the drought category, detection of drought conditions, and reduces the instances of drought false alarms. The assimilation of LAI in these locations not only corrects model errors in the simulation of vegetation, but also can help to represent unmodeled physical processes such as irrigation towards improved simulation of agricultural drought.

Restricted access
Joseph A. Santanello Jr., Christa D. Peters-Lidard, and Sujay V. Kumar

Abstract

The inherent coupled nature of earth’s energy and water cycles places significant importance on the proper representation and diagnosis of land–atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture–precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA’s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS–WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation schemes.

Full access
Sujay V. Kumar, Kenneth W. Harrison, Christa D. Peters-Lidard, Joseph A. Santanello Jr., and Dalia Kirschbaum

Abstract

Observing system simulation experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader “Earth systems” focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Toward this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. This article presents a soil moisture OSSE that employs simulated L-band measurements and assesses its utility toward improving drought and flood risk estimates using the NASA Land Information System (LIS). A decision-theory-based analysis is conducted to assess the economic utility of the observations toward improving these applications. The results suggest that the improvements in surface soil moisture, root-zone soil moisture, and total runoff fields obtained through the assimilation of L-band measurements are effective in providing improvements in the drought and flood risk assessments as well. The decision-theory analysis not only demonstrates the economic utility of observations but also shows that the use of probabilistic information from the model simulations is more beneficial compared to the use of corresponding deterministic estimates. The experiment also demonstrates the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms, and end-use application models in a single integrated framework.

Full access
Joseph A. Santanello Jr., Christa D. Peters-Lidard, Aaron Kennedy, and Sujay V. Kumar

Abstract

Land–atmosphere (L–A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land–atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land–PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L–A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.

Full access
Sujay V. Kumar, Christa D. Peters-Lidard, David Mocko, and Yudong Tian

Abstract

The downwelling shortwave radiation on the earth’s land surface is affected by the terrain characteristics of slope and aspect. These adjustments, in turn, impact the evolution of snow over such terrain. This article presents a multiscale evaluation of the impact of terrain-based adjustments to incident shortwave radiation on snow simulations over two midlatitude regions using two versions of the Noah land surface model (LSM). The evaluation is performed by comparing the snow cover simulations against the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product. The model simulations are evaluated using categorical measures, such as the probability of detection of “yes” events (PODy), which measure the fraction of snow cover presence that was correctly simulated, and false alarm ratio (FAR), which measures the fraction of no-snow events that was incorrectly simulated. The results indicate that the terrain-based correction of radiation leads to systematic improvements in the snow cover estimates in both domains and in both LSM versions (with roughly 12% overall improvement in PODy and 5% improvement in FAR), with larger improvements observed during snow accumulation and melt periods. Increased contribution to PODy and FAR improvements is observed over the north- and south-facing slopes, when the overall improvements are stratified to the four cardinal aspect categories. A two-dimensional discrete Haar wavelet analysis for the two study areas indicates that the PODy improvements in snow cover estimation drop to below 10% at scales coarser than 16 km, whereas the FAR improvements are below 10% at scales coarser than 4 km.

Full access
Sujay V. Kumar, Rolf H. Reichle, Randal D. Koster, Wade T. Crow, and Christa D. Peters-Lidard

Abstract

Root-zone soil moisture controls the land–atmosphere exchange of water and energy, and exhibits memory that may be useful for climate prediction at monthly scales. Assimilation of satellite-based surface soil moisture observations into a land surface model is an effective way to estimate large-scale root-zone soil moisture. The propagation of surface information into deeper soil layers depends on the model-specific representation of subsurface physics that is used in the assimilation system. In a suite of experiments, synthetic surface soil moisture observations are assimilated into four different models [Catchment, Mosaic, Noah, and Community Land Model (CLM)] using the ensemble Kalman filter. The authors demonstrate that identical twin experiments significantly overestimate the information that can be obtained from the assimilation of surface soil moisture observations. The second key result indicates that the potential of surface soil moisture assimilation to improve root-zone information is higher when the surface–root zone coupling is stronger. The experiments also suggest that (faced with unknown true subsurface physics) overestimating surface–root zone coupling in the assimilation system provides more robust skill improvements in the root zone compared with underestimating the coupling. When CLM is excluded from the analysis, the skill improvements from using models with different vertical coupling strengths are comparable for different subsurface truths. Last, the skill improvements through assimilation were found to be sensitive to the regional climate and soil types.

Full access
Joseph A. Santanello Jr., Sujay V. Kumar, Christa D. Peters-Lidard, Ken Harrison, and Shujia Zhou

Abstract

Land–atmosphere (LA) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. In this study, the authors examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled Weather Research and Forecasting Model (WRF) forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystems in NASA's Land Information System (LIS-OPT/LIS-UE). The impact of the calibration on the 1) spinup of the land surface used as initial conditions and 2) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. In addition, the sensitivity of this approach to the period of calibration (dry, wet, or average) is investigated. Results show that the offline calibration is successful in providing improved initial conditions and land surface physics for the coupled simulations and in turn leads to systematic improvements in land–PBL fluxes and near-surface temperature and humidity forecasts. Impacts are larger during dry regimes, but calibration during either primarily wet or dry periods leads to improvements in coupled simulations due to the reduction in land surface model bias. Overall, these results provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.

Restricted access
Jonathan L. Case, Sujay V. Kumar, Jayanthi Srikishen, and Gary J. Jedlovec

Abstract

It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.

Full access
Benjamin F. Zaitchik, Joseph A. Santanello, Sujay V. Kumar, and Christa D. Peters-Lidard

Abstract

Positive soil moisture–precipitation feedbacks can intensify heat and prolong drought under conditions of precipitation deficit. Adequate representation of these processes in regional climate models is, therefore, important for extended weather forecasts, seasonal drought analysis, and downscaled climate change projections. This paper presents the first application of the NASA Unified Weather Research and Forecasting Model (NU-WRF) to simulation of seasonal drought. Simulations of the 2006 southern Great Plains drought performed with and without soil moisture memory indicate that local soil moisture feedbacks had the potential to concentrate precipitation in wet areas relative to dry areas in summer drought months. Introduction of a simple dynamic surface albedo scheme that models albedo as a function of soil moisture intensified the simulated feedback pattern at local scale—dry, brighter areas received even less precipitation while wet, whereas darker areas received more—but did not significantly change the total amount of precipitation simulated across the drought-affected region. This soil-moisture-mediated albedo land–atmosphere coupling pathway is structurally excluded from standard versions of WRF.

Full access