Search Results
You are looking at 1 - 10 of 60 items for
- Author or Editor: Sumant Nigam x
- Refine by Access: All Content x
Abstract
The forcing of the March to May southerly surface-wind tendency along the equatorial South American coast, which leads to the annual transition of the eastern tropical Pacific basin’s climate from its peak warm phase in April, is explored through diagnostic modeling.
Modeling experiments with a high-resolution (18 σ-levels, Δθ = 2.5°, 30 zonal waves) steady-state global linear primitive equation model that produces a striking simulation of most aspects of the March to May change in the lower tropospheric circulation over the eastern tropical Pacific, including the notable southerly surface-wind tendency, have provided unique insight into the role of various physical processes. The model is forced by the 3D distribution of the residually diagnosed diabatic heating and the submonthly momentum and thermal transients, all obtained from the twice-daily 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts uninitialized analyses for 1985–95. The principal findings are the following:
-
The initial southerly surface-wind tendency along the equatorial South American coast in April is forced by the March to May abatement in deep heating (p ≲ 900 mb) over the Amazon due to the northward migration of continental convection, and by the elevated Andean cooling.
-
The increased Northern Hemisphere deep heating due to the developing Central American monsoons and the eastern Pacific ITCZ also contributes to the generation of the initial coastal southerly wind tendency, but not more strongly than the March to May cooling over South America.
-
The March to May cooling of the lower troposphere (600–900 mb) over the southeastern tropical Pacific, which likely results from the longwave radiative cooling from the developing stratocumulus cloud tops, generates relatively strong southerly surface-wind tendencies over the eastern Pacific, particularly at the equatorial South American coast.
Based on the last finding, a new feedback mechanism can be envisioned for the rapid development of the coastal southerly surface-wind tendency and stratocumulus clouds—in which the lower tropospheric cooling over the southeastern tropical Pacific, due to longwave radiative cooling from the stratocumulus cloud tops, generates southerly surface winds, which in turn foster stratocumulus growth from the increased meridional cold advection and latent heat flux.
With respect to the role of stratus clouds in the coupled annual cycle evolution, the new feedback, based on the dynamic response of cloud-top longwave cooling, should proceed more rapidly than the feedback based on the thermodynamic impact of stratus shading on SST.
Abstract
The forcing of the March to May southerly surface-wind tendency along the equatorial South American coast, which leads to the annual transition of the eastern tropical Pacific basin’s climate from its peak warm phase in April, is explored through diagnostic modeling.
Modeling experiments with a high-resolution (18 σ-levels, Δθ = 2.5°, 30 zonal waves) steady-state global linear primitive equation model that produces a striking simulation of most aspects of the March to May change in the lower tropospheric circulation over the eastern tropical Pacific, including the notable southerly surface-wind tendency, have provided unique insight into the role of various physical processes. The model is forced by the 3D distribution of the residually diagnosed diabatic heating and the submonthly momentum and thermal transients, all obtained from the twice-daily 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts uninitialized analyses for 1985–95. The principal findings are the following:
-
The initial southerly surface-wind tendency along the equatorial South American coast in April is forced by the March to May abatement in deep heating (p ≲ 900 mb) over the Amazon due to the northward migration of continental convection, and by the elevated Andean cooling.
-
The increased Northern Hemisphere deep heating due to the developing Central American monsoons and the eastern Pacific ITCZ also contributes to the generation of the initial coastal southerly wind tendency, but not more strongly than the March to May cooling over South America.
-
The March to May cooling of the lower troposphere (600–900 mb) over the southeastern tropical Pacific, which likely results from the longwave radiative cooling from the developing stratocumulus cloud tops, generates relatively strong southerly surface-wind tendencies over the eastern Pacific, particularly at the equatorial South American coast.
Based on the last finding, a new feedback mechanism can be envisioned for the rapid development of the coastal southerly surface-wind tendency and stratocumulus clouds—in which the lower tropospheric cooling over the southeastern tropical Pacific, due to longwave radiative cooling from the stratocumulus cloud tops, generates southerly surface winds, which in turn foster stratocumulus growth from the increased meridional cold advection and latent heat flux.
With respect to the role of stratus clouds in the coupled annual cycle evolution, the new feedback, based on the dynamic response of cloud-top longwave cooling, should proceed more rapidly than the feedback based on the thermodynamic impact of stratus shading on SST.
Abstract
The minimum meridional resolution needed for an adequate numerical simulation of the linear and “quasi-linear” baroscopic vorticity dynamics in the vicinity of a critical latitude is determined by using a semi-spectral nondivergent barotropic model on a sphere. The high resolution barotropic calculations of Nigam and Held in which the stationary waves are forced by the earth's orography are repeated with several lower meridional resolutions. Comparison of the lower resolution simulations with the higher resolution ones (the “true solutions”) shows the quality of both the linear and the quasi-linear simulations to deteriorate with decreasing meridional resolution.
An unresolved critical latitude results in spurious sensitivity of the steady linear response to the tropical zonal wind structure, whereas a critical latitude resolved using a strong damping coefficient rather than a fine latitudinal grid may result in the attenuation of any genuinely reflected wave at the critical latitude. For a Rayleigh damping coefficient of (13.5 days)−1, a latitudinal resolution of Δθ <3° is found to be sufficient for an adequate simulation of planetary waves in the quasi-linear model; the linear model, for a commensurate quality of simulation, needs a Δθ< 2°. While this choice of the damping coefficient is arbitrary to some extent, the obtained solutions do have structure similar to that seen in the observed wintertime stationary planetary waves.
Abstract
The minimum meridional resolution needed for an adequate numerical simulation of the linear and “quasi-linear” baroscopic vorticity dynamics in the vicinity of a critical latitude is determined by using a semi-spectral nondivergent barotropic model on a sphere. The high resolution barotropic calculations of Nigam and Held in which the stationary waves are forced by the earth's orography are repeated with several lower meridional resolutions. Comparison of the lower resolution simulations with the higher resolution ones (the “true solutions”) shows the quality of both the linear and the quasi-linear simulations to deteriorate with decreasing meridional resolution.
An unresolved critical latitude results in spurious sensitivity of the steady linear response to the tropical zonal wind structure, whereas a critical latitude resolved using a strong damping coefficient rather than a fine latitudinal grid may result in the attenuation of any genuinely reflected wave at the critical latitude. For a Rayleigh damping coefficient of (13.5 days)−1, a latitudinal resolution of Δθ <3° is found to be sufficient for an adequate simulation of planetary waves in the quasi-linear model; the linear model, for a commensurate quality of simulation, needs a Δθ< 2°. While this choice of the damping coefficient is arbitrary to some extent, the obtained solutions do have structure similar to that seen in the observed wintertime stationary planetary waves.
Abstract
The latitude-height structure of variability of the monthly-mean zonally-averaged zonal wind (Ū) is objectively documented for the 9-year period (1980–88) during which both ECMWF and NMC global analyses are available. Modes, resulting from a rotated principal component analysis of the wintertime variability in each dataset, are compared not only with each other but also with those present in a longer dataset (1963–77) of NMC's geostrophically analyzed extratropical winds.
In the northern extratropics, there is considerable agreement between the two modern datasets on the structure of wintertime variability: the first two modes, which together account for over 58% of the integrated variance, have largest amplitudes (∼3 m s−1) at the tropopause level and little, if any, phase variation with height. The first mode, which explains over 40% of the variance (in the ECMWF, and over 32% in the NMC data), has meridionally a dipole structure centered approximately at the latitude of the subtropical jet—suggestive of small latitudinal shifts of the jet core. The dominant mode of fluctuation in the 14-year NMC's geostrophic wind record, however, has a node at ∼40°N, which is suggestive more of “in place” fluctuations in the jet speed rather than in the “jet-location.”
In the tropics and subtropics, the variability in both 9-year datasets is dominated by a mode that represents fluctuations in the intensity of tropical convection. The time series associated with this mode is rather intriguing.
An examination of variability in the winter troposphere/stratosphere in an 8-year (1978/79–1985/86) record of zonal-mean zonal winds, derived from “NMC/CAC-analyzed” geopotential heights, reveals interesting baroclinic-type modes of variability.
Abstract
The latitude-height structure of variability of the monthly-mean zonally-averaged zonal wind (Ū) is objectively documented for the 9-year period (1980–88) during which both ECMWF and NMC global analyses are available. Modes, resulting from a rotated principal component analysis of the wintertime variability in each dataset, are compared not only with each other but also with those present in a longer dataset (1963–77) of NMC's geostrophically analyzed extratropical winds.
In the northern extratropics, there is considerable agreement between the two modern datasets on the structure of wintertime variability: the first two modes, which together account for over 58% of the integrated variance, have largest amplitudes (∼3 m s−1) at the tropopause level and little, if any, phase variation with height. The first mode, which explains over 40% of the variance (in the ECMWF, and over 32% in the NMC data), has meridionally a dipole structure centered approximately at the latitude of the subtropical jet—suggestive of small latitudinal shifts of the jet core. The dominant mode of fluctuation in the 14-year NMC's geostrophic wind record, however, has a node at ∼40°N, which is suggestive more of “in place” fluctuations in the jet speed rather than in the “jet-location.”
In the tropics and subtropics, the variability in both 9-year datasets is dominated by a mode that represents fluctuations in the intensity of tropical convection. The time series associated with this mode is rather intriguing.
An examination of variability in the winter troposphere/stratosphere in an 8-year (1978/79–1985/86) record of zonal-mean zonal winds, derived from “NMC/CAC-analyzed” geopotential heights, reveals interesting baroclinic-type modes of variability.
Abstract
The dynamical basis for the Asian summer monsoon rainfall-El Niño linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Niño (1987) and La Niña (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysts) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Niño–related heating anomalies over the tropical Indian and Pacific Oceans.
The striking simulation of the June–August (1987–1988) near-surface and upper-air tropical circulation anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause.
The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March–May and June–August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Niño–related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina.
The anomalous summer monsoon rainfall over Asian/African longitudes in turn, forces modest surface westerlies over the equatorial western and south tropical Pacific, which contribute positively to the ongoing El Niño's development.
Abstract
The dynamical basis for the Asian summer monsoon rainfall-El Niño linkage is explored through diagnostic calculations with a linear steady-state multilayer primitive equation model. The contrasting monsoon circulation during recent El Niño (1987) and La Niña (1988) years is first simulated using orography and the residually diagnosed heating (from the thermodynamic equation and the uninitialized, but mass-balanced, ECMWF analysts) as forcings, and then analyzed to provide insight into the importance of various regional forcings, such as the El Niño–related heating anomalies over the tropical Indian and Pacific Oceans.
The striking simulation of the June–August (1987–1988) near-surface and upper-air tropical circulation anomalies indicates that tropical anomaly dynamics during northern summer is essentially linear even at the 150-mb level. The vertical structure of the residually diagnosed heating anomaly that contributes to this striking simulation differs significantly from the specified canonical vertical structure (used in generating 3D heating from OLR/precipitation distributions) near the tropical tropopause.
The dynamical diagnostic analysis of the anomalous circulation during 1987 and 1988 March–May and June–August periods shows the orographically forced circulation anomaly (due to changes in the zonally averaged basic-state flow) to be quite dominant in modulating the low-level moisture-flux convergence and hence monsoon rainfall over Indochina. The El Niño–related persistent (spring-to-summer) heating anomalies over the tropical Pacific and Indian Ocean basins, on the other hand, mostly regulate the low-level westerly monsoon flow intensity over equatorial Africa and the northern Indian Ocean and, thereby, the large-scale moisture flux into Sahel and Indochina.
The anomalous summer monsoon rainfall over Asian/African longitudes in turn, forces modest surface westerlies over the equatorial western and south tropical Pacific, which contribute positively to the ongoing El Niño's development.
Abstract
The contribution of the interaction between tropically forced circulation anomalies and the extratropicalmountains in the generation of extratropical circulation anomalies during the 1987/88 and 1988/89 winter seasons is diagnosed using a divergent barotropic model that solves for both the zonal-mean and eddy components of the 200-mb rotational anomalies. Barotropic modeling shows that the orographic modulation of the rotational response to the 200-mb tropical divergence anomaly can be substantial over the Pacific–North American region.
-
The modulation consists of a large-scale wave pattern with a ridge in the central subtropical Pacific, a trough over the Gulf of Alaska, and a weak ridge extending across North America from Baja California to Greenland. These features have an amplitude of ∼40 gpm, and the orographic modulation is thus about one-third as strong as the primary wave pattern.
-
The associated 200-mb zonal wind is strongest (∼5 m s−1) in the vicinity of the eastern end of the East Asian jet, thus contributing to the southeastward jet extension during El Niño winters.
-
The Himalayan–Tibetan complex is the major locus of orographic interaction in the model, for it alone accounts for all the features and over two-thirds of the amplitude modulation.
-
The eddy and zonal-mean parts of the tropically forced flow anomalies make comparable contributions to orographic modulation. However, the midlatitude eddy anomalies themselves result, in part, from the interaction of the zonal-mean zonal wind anomaly and the climatological vorticity gradients, that is, from “zonal–eddy”interaction. The strength of this interaction depends on the arbitrarily specified distribution of the compensating zonal-mean subsidence in the model.
These findings indicate the potential importance of secondary orographic interaction in the generation of extratropical circulation anomalies in response to tropical heating anomalies. Experiments with more complete dynamical models that predict both the rotational and divergent components of the flow in response to tropical heating anomalies are clearly warranted.
Abstract
The contribution of the interaction between tropically forced circulation anomalies and the extratropicalmountains in the generation of extratropical circulation anomalies during the 1987/88 and 1988/89 winter seasons is diagnosed using a divergent barotropic model that solves for both the zonal-mean and eddy components of the 200-mb rotational anomalies. Barotropic modeling shows that the orographic modulation of the rotational response to the 200-mb tropical divergence anomaly can be substantial over the Pacific–North American region.
-
The modulation consists of a large-scale wave pattern with a ridge in the central subtropical Pacific, a trough over the Gulf of Alaska, and a weak ridge extending across North America from Baja California to Greenland. These features have an amplitude of ∼40 gpm, and the orographic modulation is thus about one-third as strong as the primary wave pattern.
-
The associated 200-mb zonal wind is strongest (∼5 m s−1) in the vicinity of the eastern end of the East Asian jet, thus contributing to the southeastward jet extension during El Niño winters.
-
The Himalayan–Tibetan complex is the major locus of orographic interaction in the model, for it alone accounts for all the features and over two-thirds of the amplitude modulation.
-
The eddy and zonal-mean parts of the tropically forced flow anomalies make comparable contributions to orographic modulation. However, the midlatitude eddy anomalies themselves result, in part, from the interaction of the zonal-mean zonal wind anomaly and the climatological vorticity gradients, that is, from “zonal–eddy”interaction. The strength of this interaction depends on the arbitrarily specified distribution of the compensating zonal-mean subsidence in the model.
These findings indicate the potential importance of secondary orographic interaction in the generation of extratropical circulation anomalies in response to tropical heating anomalies. Experiments with more complete dynamical models that predict both the rotational and divergent components of the flow in response to tropical heating anomalies are clearly warranted.
Abstract
Atlantic SST variability in the twentieth century is analyzed factoring the influence of natural SST variability in the Pacific basin and the secular change in global SSTs. The tropical and northern extratropical basins are analyzed together using the extended EOF technique, which permits extraction of the interannual and multidecadal modes in the pan-Atlantic basin in a single step.
The leading mode of Pacific-uninfluenced SST variability is a multidecadal oscillation focused in the extratropical basin, with a period of ∼70 yr. The mode differs from the conventional Atlantic multidecadal oscillation (AMO) in the near quiescence of the tropical–subtropical basin, highlighting the significant influence of the Pacific basin on this region in conventional analysis; as much as 45% of the regional variance resulting from the conventional AMO is due to this influence.
The second and third modes capture the growth (east-to-west development) and decay (near-simultaneous loss of amplitudes) of interannual SST variability in the eastern tropical Atlantic. A nominal 4-yr evolution cycle is identified, but phase transitions are irregular.
The fourth mode describes a north–south tripole with the mature-phase structure resembling the North Atlantic Oscillation’s (NAO’s) SST footprint in winter. The mode lags the NAO by two seasons. Modal evolution involves eastward extension of the main lobe (centered near the separation of the Gulf Stream) along with shrinkage of the oppositely signed two side lobes.
Abstract
Atlantic SST variability in the twentieth century is analyzed factoring the influence of natural SST variability in the Pacific basin and the secular change in global SSTs. The tropical and northern extratropical basins are analyzed together using the extended EOF technique, which permits extraction of the interannual and multidecadal modes in the pan-Atlantic basin in a single step.
The leading mode of Pacific-uninfluenced SST variability is a multidecadal oscillation focused in the extratropical basin, with a period of ∼70 yr. The mode differs from the conventional Atlantic multidecadal oscillation (AMO) in the near quiescence of the tropical–subtropical basin, highlighting the significant influence of the Pacific basin on this region in conventional analysis; as much as 45% of the regional variance resulting from the conventional AMO is due to this influence.
The second and third modes capture the growth (east-to-west development) and decay (near-simultaneous loss of amplitudes) of interannual SST variability in the eastern tropical Atlantic. A nominal 4-yr evolution cycle is identified, but phase transitions are irregular.
The fourth mode describes a north–south tripole with the mature-phase structure resembling the North Atlantic Oscillation’s (NAO’s) SST footprint in winter. The mode lags the NAO by two seasons. Modal evolution involves eastward extension of the main lobe (centered near the separation of the Gulf Stream) along with shrinkage of the oppositely signed two side lobes.
Abstract
The role of zonal-mean zonal flow (
The role of stationary waves in driving
Abstract
The role of zonal-mean zonal flow (
The role of stationary waves in driving
Abstract
The structure of surface-wind anomalies associated with ENSO variability is extracted from ComprehensiveOcean–Atmosphere Dataset observations and European Centre for Medium-Range Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP) reanalyses, along with estimates of uncertainty. The targets are used to evaluate ENSO surface winds produced by the National Center for Atmospheric Research’s atmospheric GCM known as the Community Climate Model, version 3 (CCM3), when integrated in the climate-simulation mode. Simulated anomalies have stronger easterlies in the off-equatorial Tropics and stronger equatorward flow in the Pacific than any of the observational estimates do. CCM3’s wind departures are found to be large when compared with the difference of the reanalysis anomalies and should thus be considered to be errors.
In a companion paper, the authors make a compelling case for the presence of robust errors in CCM3’s ENSO heating distribution, based on comparisons with the residually diagnosed heating anomalies from ECMWF and NCEP reanalyses.
The linkage between specific features of CCM3’s surface-wind and heating errors is investigated using a steady, linear, global, primitive equation model (18 vertical σ levels, 30 zonal waves, and latitude spacing of 2.5°). Diagnostic modeling indicates that stronger equatorward flow in the Pacific results largely from excessive diabatic cooling in the off-equatorial Tropics, a key heating error linked to a more meridional redistribution of ENSO heating in CCM3. The “bottom-heavy” structure of CCM3’s equatorial heating anomalies, on the other hand, is implicated in the generation of zonal-wind errors in the central and eastern tropical Pacific.
In the diagnostic simulation of CCM3’s ENSO variability, the longwave heating anomalies, with peak values near 850 mb, contribute as much to surface zonal winds as do all other heating components together—a novel finding, needing corroboration.
This study, along with the companion paper, illustrates the dynamical diagnosis strategy—of circulation and forcing intercomparisons with observed counterparts, followed by diagnostic modeling—for analyzing errors in the GCM’s simulation of climate variability.
Abstract
The structure of surface-wind anomalies associated with ENSO variability is extracted from ComprehensiveOcean–Atmosphere Dataset observations and European Centre for Medium-Range Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP) reanalyses, along with estimates of uncertainty. The targets are used to evaluate ENSO surface winds produced by the National Center for Atmospheric Research’s atmospheric GCM known as the Community Climate Model, version 3 (CCM3), when integrated in the climate-simulation mode. Simulated anomalies have stronger easterlies in the off-equatorial Tropics and stronger equatorward flow in the Pacific than any of the observational estimates do. CCM3’s wind departures are found to be large when compared with the difference of the reanalysis anomalies and should thus be considered to be errors.
In a companion paper, the authors make a compelling case for the presence of robust errors in CCM3’s ENSO heating distribution, based on comparisons with the residually diagnosed heating anomalies from ECMWF and NCEP reanalyses.
The linkage between specific features of CCM3’s surface-wind and heating errors is investigated using a steady, linear, global, primitive equation model (18 vertical σ levels, 30 zonal waves, and latitude spacing of 2.5°). Diagnostic modeling indicates that stronger equatorward flow in the Pacific results largely from excessive diabatic cooling in the off-equatorial Tropics, a key heating error linked to a more meridional redistribution of ENSO heating in CCM3. The “bottom-heavy” structure of CCM3’s equatorial heating anomalies, on the other hand, is implicated in the generation of zonal-wind errors in the central and eastern tropical Pacific.
In the diagnostic simulation of CCM3’s ENSO variability, the longwave heating anomalies, with peak values near 850 mb, contribute as much to surface zonal winds as do all other heating components together—a novel finding, needing corroboration.
This study, along with the companion paper, illustrates the dynamical diagnosis strategy—of circulation and forcing intercomparisons with observed counterparts, followed by diagnostic modeling—for analyzing errors in the GCM’s simulation of climate variability.
Abstract
ENSO teleconnections were originally regarded as a single train of stationary Rossby waves generated by a compact region of enhanced (reduced for La Niña) equatorial convective heating. While more recent studies have greatly enhanced this dynamical picture, the dominant conceptual model of the teleconnections still identifies this monopolar convective heat source as the ultimate driver of the teleconnections.
This note presents evidence that the surrounding regions of diabatic cooling are just as important as equatorial heating in producing the ENSO teleconnections. In simulations with a linear diagnostic model, heating and cooling anomalies derived from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis make comparable contributions to the upper-level eddy height anomalies. In particular, remote cooling is just as important as local heating in determining the central longitude of the subtropical El Niño anticyclones.
The same diagnosis is applied to the ENSO response of an atmospheric general circulation model (AGCM) forced by observed sea surface temperatures in an integration performed by the NASA Seasonal-to-Interannual Prediction Project (NSIPP). Despite differences in the climatological basic state and diabatic heating, positive and negative heating anomalies play the same complimentary roles for the simulated ENSO response as they do for the observed ENSO pattern.
Abstract
ENSO teleconnections were originally regarded as a single train of stationary Rossby waves generated by a compact region of enhanced (reduced for La Niña) equatorial convective heating. While more recent studies have greatly enhanced this dynamical picture, the dominant conceptual model of the teleconnections still identifies this monopolar convective heat source as the ultimate driver of the teleconnections.
This note presents evidence that the surrounding regions of diabatic cooling are just as important as equatorial heating in producing the ENSO teleconnections. In simulations with a linear diagnostic model, heating and cooling anomalies derived from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis make comparable contributions to the upper-level eddy height anomalies. In particular, remote cooling is just as important as local heating in determining the central longitude of the subtropical El Niño anticyclones.
The same diagnosis is applied to the ENSO response of an atmospheric general circulation model (AGCM) forced by observed sea surface temperatures in an integration performed by the NASA Seasonal-to-Interannual Prediction Project (NSIPP). Despite differences in the climatological basic state and diabatic heating, positive and negative heating anomalies play the same complimentary roles for the simulated ENSO response as they do for the observed ENSO pattern.
Abstract
The Asian summer monsoon heating anomalies are parameterized in terms of the concurrent ENSO SST anomalies and used as additional forcing in the Cane–Zebiak (CZ) Pacific ocean–atmosphere anomaly model. The Asian heating parameterization is developed from the rotated principal component analysis of combined interannual variability of the tropical Pacific SSTs, residually diagnosed tropical diabatic heating at 400 mb (from ECMWF’s analyses), and the 1000-mb tropical winds during the 1979–97 summer months of June, July, and August.
Analysis of the 95 000-yr-long model integrations conducted with and without the interactive Asian sector heating anomalies reveals that their influence on the Pacific surface winds leads to increased ENSO occurrence—an extra ENSO event every 20 yr or so. An examination of the ENSO distribution w.r.t. the peak SST anomaly in the eastern equatorial Pacific shows increased El Niño occurrence in the 2.2–3.6 K range (and −1.0 to −1.6 K range in case of cold events) along with a modest reduction in the 0.6–1.2 K range, that is, a population shift due to the strengthening of weak El Niños in the monsoon run. The interaction of ENSO-related Asian summer monsoon heating with the CZ model’s ocean–atmosphere also results in a wider period distribution of ENSO variability, but with the El Niño peak phase remaining seasonally locked with the northern winter months.
The above modeling results confirm the positive feedback between Asian summer monsoon and ENSO suggested by previous empirical and diagnostic modeling studies; the feedback is generated primarily by the diabatic heating changes in the Asian Tropics.
Abstract
The Asian summer monsoon heating anomalies are parameterized in terms of the concurrent ENSO SST anomalies and used as additional forcing in the Cane–Zebiak (CZ) Pacific ocean–atmosphere anomaly model. The Asian heating parameterization is developed from the rotated principal component analysis of combined interannual variability of the tropical Pacific SSTs, residually diagnosed tropical diabatic heating at 400 mb (from ECMWF’s analyses), and the 1000-mb tropical winds during the 1979–97 summer months of June, July, and August.
Analysis of the 95 000-yr-long model integrations conducted with and without the interactive Asian sector heating anomalies reveals that their influence on the Pacific surface winds leads to increased ENSO occurrence—an extra ENSO event every 20 yr or so. An examination of the ENSO distribution w.r.t. the peak SST anomaly in the eastern equatorial Pacific shows increased El Niño occurrence in the 2.2–3.6 K range (and −1.0 to −1.6 K range in case of cold events) along with a modest reduction in the 0.6–1.2 K range, that is, a population shift due to the strengthening of weak El Niños in the monsoon run. The interaction of ENSO-related Asian summer monsoon heating with the CZ model’s ocean–atmosphere also results in a wider period distribution of ENSO variability, but with the El Niño peak phase remaining seasonally locked with the northern winter months.
The above modeling results confirm the positive feedback between Asian summer monsoon and ENSO suggested by previous empirical and diagnostic modeling studies; the feedback is generated primarily by the diabatic heating changes in the Asian Tropics.