Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Susan E. Allen x
  • All content x
Clear All Modify Search
Susan E. Allen and Richard E. Thomson

Abstract

Linear analytical solutions for bottom-trapped subinertial oscillatory flow over simple ridge topographies in a stratified (two-layer) rotating fluid are presented. Results are compared to moored current meter observations of bottom-intensified motions over the Endeavour Segment of Juan de Fuca Ridge in the northeast Pacific. The solutions reproduce many of the observed features including preferential amplification of the clockwise rotary component of velocity over the ridge and increased velocity amplification with proximity to the ridge crest. For a given internal deformation radius, the degree of current amplification increases with increased bottom slope, ridge height, and oscillation frequency. Amplification decreases with increased width of the ridge relative to the deformation radius.

Full access
Gonzalo S. Saldías and Susan E. Allen

Abstract

The response of a coastal ocean numerical model, typical of eastern boundaries, is investigated under upwelling-favorable wind forcing and with/without the presence of a submarine canyon. Experiments were run over three contrasting shelf depth/slope bathymetries and forced by an upwelling-favorable alongshore wind. Random noise in the wind stress field was used to trigger the onset of frontal instabilities, which formed around the upwelling front. Their development and evolution are enhanced over deeper (and less inclined) shelves. Experiments without a submarine canyon agree well with previous studies of upwelling frontal instabilities; baroclinic instabilities grow along the front in time. The addition of a submarine canyon incising the continental shelf dramatically changes the circulation and frontal characteristics. Intensified upwelling is channeled through the downstream side of the canyon in all depth/slope configurations. Farther downstream a downwelling area is generated, being larger and stronger on a shallow shelf. The canyon affects mainly the location of the southward upwelling jet, which is deflected inshore and accelerated after passing over the canyon. This process is accompanied by a break in the alongshore scale of the instabilities on either side of the canyon. Term balances of the depth-averaged cross-shore momentum equation reaffirm the downstream acceleration of the jet and the increased wavelength of the instabilities, and clarify the dominant balance between the advection and ageostrophic terms around the canyon.

Restricted access
Karina Ramos-Musalem and Susan E. Allen

Abstract

The exchanges of water, nutrients, and oxygen between the coastal and open ocean are key components of on-shelf nutrient budgets and biogeochemical cycles. On a regional scale, submarine canyons enhance physical processes such as shelf–slope mass exchange and mixing. There is good understanding of the flow around upwelling submarine canyons; however, the flux of biologically relevant tracers is less understood. This work investigates the impact of submarine canyons on the cross-shelf exchange of tracers and water, taking into account the impact of locally enhanced mixing within the canyon, and develops a scaling estimate for canyon-induced upwelling of tracers, proportional to local concentration, vertical diffusivity, and previously scaled upwelling flux. For that purpose, we performed numerical experiments simulating an upwelling event near an idealized canyon, adding a passive tracer with an initially linear profile. We varied the geographic distribution of vertical eddy diffusivity and its magnitude, the initial stratification, the Coriolis parameter, and the strength of the incoming flow. We find that a canyon of width 5% of the along-shelf length of the shelf upwells between 25% and 89% more tracer mass onto the shelf than shelfbreak upwelling. Locally enhanced vertical diffusivity has a positive effect on the tracer that is advected by the upwelling flow and can increase canyon-upwelled tracer flux by up to 27%.

Full access
Timothy D. Finnigan, Jason A. Vine, Peter L. Jackson, Susan E. Allen, Gregory A. Lawrence, and Douw G. Steyn

Abstract

Strong gap winds in Howe Sound, British Columbia, are simulated using a small-scale physical model. Model results are presented and compared with observations recorded in Howe Sound during a severe gap wind event in December 1992. Hydraulic theory is utilized to explain along-channel variation in wind. Field observations affirm the findings of the physical modeling with both, indicating the presence and location of controls and hydraulic jumps in the wind layer. Hydraulic behavior is found to change as the synoptic pressure gradient and the flow rate increase. In particular, field results indicate two distinct hydraulic situations: one during relatively weak wind, the other, which is more strongly controlled, during the period of peak wind. An additional comparison is made with output from the computer model hydmod of Jackson and Steyn. Numerical simulations, configured for the conditions present in Howe Sound during the December 1992 event, indicate channel hydraulics (and thus spatial wind speed variation) closely resembling the physical model and field results.

Full access