Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Svein Vagle x
  • Refine by Access: All Content x
Clear All Modify Search
Svein Vagle
and
David M. Farmer

Abstract

A multifrequency acoustical-backscatter technique is described for determining the size distribution of bubbles with radii between 8 and 130 µm. The method makes use of the resonance in the microbubbles and operates at six frequencies ranging from 28 to 400 kHz. It has the advantage that vertical profiles of the bubble-size distribution can be obtained for extended periods without need for in situ instrumentation. Algorithms have been developed for real-time calculation, including correction for wave orbital displacement, bubble attenuation of the transmitted pulse, and other effects.

Full access
Patrick F. Cummins
,
Laurence Armi
, and
Svein Vagle

Abstract

In stratified tidal flow over a sill, the character of the upstream response is determined by a Froude number Fs based on the stratification near the surface. This is distinguished from the Froude number governing the response in the neighborhood of the sill crest, which is based on the weak density step associated with a flow bifurcation. For moderate values of Fs , the upstream response consists of nonlinear waves or a weak undular bore. For larger values of Fs , a strong, quasi-stationary, internal hydraulic jump dominates the upstream response. At sufficiently large values of Fs , the upstream bore is swept downstream and lost. Acoustic backscatter and velocity data are presented for the case of a strong internal bore or gravity current in a tidally modulated sill flow. Numerical simulations with varying near-surface stratification are presented to illustrate the upstream responses at different values of Fs . The theory of two-layer hydraulic flows is invoked to account for the development of the upstream jump.

Full access
Ming Li
,
Svein Vagle
, and
David M. Farmer

Abstract

A large eddy simulation (LES) model is used to investigate an upper-ocean response to a fall storm in the open ocean of the North Pacific Ocean. The storm is characterized by rapid increases in wind speed and surface heat loss but a relatively steady wave field. The LES model shows that surface convergence zones or windrows organize into line patterns aligned with the wind direction, evolving from nearly parallel lines to irregular structures featuring Y junctions as the wind speed increases. The downwelling-to-upwelling velocity ratio ranges between 1.2 and 1.6, indicating a moderate level of asymmetry between the downwelling and upwelling plumes in Langmuir circulation. During the storm, the turbulent Langmuir number La t increases from 0.2 to 0.5 while the vertical turbulence intensity σw 2 decreases from 1.4 to 0.7 u * 2, where u * is the friction velocity. The order of turbulence intensities in three directions switches from crosswind ≈ vertical > downwind directions to downwind > crosswind > vertical directions. This suggests a transition from Langmuir to shear turbulence as the storm progresses. The Hoennikker number (Ho) remains below 0.1 and the strong evaporative heat loss does not contribute much to the turbulence generation in the ocean mixed layer. The LES results are compared with in situ and acoustic measurements collected during the storm. Patterns of model-predicted near-surface downwelling zones are in good agreement with horizontal distributions of bubble clouds revealed in sidescan sonar images. Striking similarity is also found in the temperature anomalies between the LES model and high-resolution thermistor chain measurements.

Full access
Svein Vagle
,
William G. Large
, and
David M. Farmer

Abstract

The potential of the WOTAN technique to estimate oceanic winds from underwater ambient sound is thoroughly evaluated. Anemometer winds and sound spectrum levels at 11 frequencies in the range 3–25 kHz from the FASINEX Experiment are used to establish both the frequency and wind speed dependencies of ambient sound. These relationships are then tested using independent data from four other deployments, and found to hold in the deep ocean in the OCEAN STORMS but not in shallow coastal waters. The OCEAN STORMS ambient-sound wind speed estimates are within ±0.5 m s−1 of anemometer values for wind speeds between 4 and 15 m s−1. Causes of differences, including disequilibrium of the surface wave field, are discussed and it is argued that they are no larger than expected.

The procedure for processing ambient-sound data is developed. It includes temperature dependent calibration detection of shipping and precipitation contamination, and standardization of measurements to 1 m depth. The latter procedure allows data from different depths and sound speed profiles to be compared. The potential for using the technique on remote platforms is assessed. On-board processing and subsequent despiking and interpolation would result in a continuous wind record. For time scales of 12 hours or longer the results would be very similar to those obtained with an anemometer. Over shorter time scales there may be some important differences.

Full access
David M. Farmer
,
Svein Vagle
, and
A. Donald Booth

Abstract

An instrument for the measurement of bubble size distributions is described. The sensing element exploits the free-flooding resonator design of Medwin with modifications to overcome the limitations in the original implementation, especially those due to a sensitivity to ambient pressure fluctuations in the surrounding medium. A mathematical model of the resonator provides insight into the factors affecting its performance and motivates application of appropriate signal processing algorithms. Comparison of different bubble size calculation methods shows the direct approach of Commander and MacDonald to be most successful. The stability of this new implementation of the resonator facilitates accurate measurement of the complex dispersion relation. Comparison of the real and imaginary components then leads to the definition of a measurement quality factor that may be calculated for each sample. Practical considerations are discussed for implementation of autonomous battery-powered resonator arrays for ocean deployments with real-time data processing. Examples are presented of measured bubble size distributions acquired from an autonomous array of five instruments moored in the Gulf of Mexico.

Full access