Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Sylvie Le Gentil x
- Refine by Access: All Content x
Abstract
Understanding and predicting how internal tides distort and lose coherence as they propagate through the ocean has been identified as a key issue for interpreting data from the upcoming wide-swath altimeter mission Surface Water and Ocean Topography (SWOT). This study addresses the issue through the analysis of numerical experiments where a low-mode internal tide propagates through a quasigeostrophic turbulent jet. Equations of motion linearized around the slower turbulent field are projected onto vertical modes and assumed to describe the dynamics of the low-mode internal tide propagation. Diagnostics of the terms responsible for the interaction between the wave and the slow circulation are computed from the numerical outputs. The large-scale change of stratification, on top of eddies and jet meanders, contributes significantly to these interaction terms, which is shown to be consistent with an independent scaling analysis. The sensitivity of interaction terms to a degradation of the slow field spatial and temporal resolution indicates that present-day observing systems (Argo network, altimetry) may lack the spatial resolution necessary to correctly predict internal tide evolution. The upcoming SWOT satellite mission may improve upon this situation. The number of vertical modes required to properly estimate interaction terms is discussed. These results advocate development of a simplified model based on solving a modest number of the linearized equations subject to a prescribed mesoscale field and internal tide sources.
Abstract
Understanding and predicting how internal tides distort and lose coherence as they propagate through the ocean has been identified as a key issue for interpreting data from the upcoming wide-swath altimeter mission Surface Water and Ocean Topography (SWOT). This study addresses the issue through the analysis of numerical experiments where a low-mode internal tide propagates through a quasigeostrophic turbulent jet. Equations of motion linearized around the slower turbulent field are projected onto vertical modes and assumed to describe the dynamics of the low-mode internal tide propagation. Diagnostics of the terms responsible for the interaction between the wave and the slow circulation are computed from the numerical outputs. The large-scale change of stratification, on top of eddies and jet meanders, contributes significantly to these interaction terms, which is shown to be consistent with an independent scaling analysis. The sensitivity of interaction terms to a degradation of the slow field spatial and temporal resolution indicates that present-day observing systems (Argo network, altimetry) may lack the spatial resolution necessary to correctly predict internal tide evolution. The upcoming SWOT satellite mission may improve upon this situation. The number of vertical modes required to properly estimate interaction terms is discussed. These results advocate development of a simplified model based on solving a modest number of the linearized equations subject to a prescribed mesoscale field and internal tide sources.
Abstract
The dynamics of the formation of layering surrounding meddy-like vortex lenses is investigated using primitive equation (PE), quasigeostrophic (QG), and tracer advection models. Recent in situ data inside a meddy confirmed the formation of highly density-compensated layers in temperature and salinity at the periphery of the vortex core. Very high-resolution PE modeling of an idealized meddy showed the formation of realistic layers even in the absence of double-diffusive processes. The strong density compensation observed in the PE model, in good agreement with in situ data, suggests that stirring might be a leading process in the generation of layering. Passive tracer experiments confirmed that the vertical variance cascade in the periphery of the vortex core is triggered by the vertical shear of the azimuthal velocity, resulting in the generation of thin layers. The time evolution of this process down to scales of O(10) m is quantified, and a simple scaling is proposed and shown to describe precisely the thinning down of the layers as a function of the initial tracer column’s horizontal width and the vertical shear of the azimuthal velocity. Nonlinear QG simulations were performed and analyzed for comparison with the work of Hua et al. A step-by-step interpretation of these results on the evolution of layering is proposed in the context of tracer stirring.
Abstract
The dynamics of the formation of layering surrounding meddy-like vortex lenses is investigated using primitive equation (PE), quasigeostrophic (QG), and tracer advection models. Recent in situ data inside a meddy confirmed the formation of highly density-compensated layers in temperature and salinity at the periphery of the vortex core. Very high-resolution PE modeling of an idealized meddy showed the formation of realistic layers even in the absence of double-diffusive processes. The strong density compensation observed in the PE model, in good agreement with in situ data, suggests that stirring might be a leading process in the generation of layering. Passive tracer experiments confirmed that the vertical variance cascade in the periphery of the vortex core is triggered by the vertical shear of the azimuthal velocity, resulting in the generation of thin layers. The time evolution of this process down to scales of O(10) m is quantified, and a simple scaling is proposed and shown to describe precisely the thinning down of the layers as a function of the initial tracer column’s horizontal width and the vertical shear of the azimuthal velocity. Nonlinear QG simulations were performed and analyzed for comparison with the work of Hua et al. A step-by-step interpretation of these results on the evolution of layering is proposed in the context of tracer stirring.
Abstract
The Lagrangian and Eulerian surface current signatures of a low-mode internal tide propagating through a turbulent balanced flow are compared in idealized numerical simulations. Lagrangian and Eulerian total (i.e., coherent plus incoherent) tidal amplitudes are found to be similar. Compared to Eulerian diagnostics, the Lagrangian tidal signal is more incoherent with comparable or smaller incoherence time scales and larger incoherent amplitudes. The larger level of incoherence in Lagrangian data is proposed to result from the deformation of an Eulerian internal tide signal induced by drifter displacements. Based on the latter hypothesis, a theoretical model successfully predicts Lagrangian autocovariances by relating Lagrangian and Eulerian autocovariances and the properties of the internal tides and jet. These results have implications for the separation of balanced flow and internal tides signals in the sea level data collected by the future Surface Water and Ocean Topography (SWOT) satellite mission.
Abstract
The Lagrangian and Eulerian surface current signatures of a low-mode internal tide propagating through a turbulent balanced flow are compared in idealized numerical simulations. Lagrangian and Eulerian total (i.e., coherent plus incoherent) tidal amplitudes are found to be similar. Compared to Eulerian diagnostics, the Lagrangian tidal signal is more incoherent with comparable or smaller incoherence time scales and larger incoherent amplitudes. The larger level of incoherence in Lagrangian data is proposed to result from the deformation of an Eulerian internal tide signal induced by drifter displacements. Based on the latter hypothesis, a theoretical model successfully predicts Lagrangian autocovariances by relating Lagrangian and Eulerian autocovariances and the properties of the internal tides and jet. These results have implications for the separation of balanced flow and internal tides signals in the sea level data collected by the future Surface Water and Ocean Topography (SWOT) satellite mission.
Abstract
Using numerical simulations forced by a uniform realistic wind time series, the authors show that the presence of a mesoscale eddy field at midlatitudes accelerates the vertical propagation of the wind-forced near-inertial waves (NIW) and produces the emergence of a maximum of vertical velocity into the deep ocean (around 2500 m) characterized by a mean amplitude of 25 m day−1, a dominant 2f frequency, and scales as small as O(30 km). These results differ from previous studies that reported a smaller depth and larger scales. The authors show that the larger depth observed in the present study (2500 m instead of 1700 m) is due to the wind forcing duration that allows the first five baroclinic modes to disperse and to impact the deep NIW maximum (instead of the first two modes as reported before). The smaller scales (30 km instead of 90 km) are explained by a resonance mechanism (described in previous studies) that affects the high NIW baroclinic modes, but only when small-scale relative vorticity structures (related to the mesoscale eddy field) have an amplitude that is large enough. These results, which point out the importance of the wind forcing duration and the resolution, indicate that the emergence of a deep NIW maximum with a 2f frequency reported before is a robust feature that is enhanced with more realistic conditions. Such 2f frequency in the deep interior raises the question of the mechanisms, still unresolved, that may ultimately transfer this superinertial energy into mixing at these depths.
Abstract
Using numerical simulations forced by a uniform realistic wind time series, the authors show that the presence of a mesoscale eddy field at midlatitudes accelerates the vertical propagation of the wind-forced near-inertial waves (NIW) and produces the emergence of a maximum of vertical velocity into the deep ocean (around 2500 m) characterized by a mean amplitude of 25 m day−1, a dominant 2f frequency, and scales as small as O(30 km). These results differ from previous studies that reported a smaller depth and larger scales. The authors show that the larger depth observed in the present study (2500 m instead of 1700 m) is due to the wind forcing duration that allows the first five baroclinic modes to disperse and to impact the deep NIW maximum (instead of the first two modes as reported before). The smaller scales (30 km instead of 90 km) are explained by a resonance mechanism (described in previous studies) that affects the high NIW baroclinic modes, but only when small-scale relative vorticity structures (related to the mesoscale eddy field) have an amplitude that is large enough. These results, which point out the importance of the wind forcing duration and the resolution, indicate that the emergence of a deep NIW maximum with a 2f frequency reported before is a robust feature that is enhanced with more realistic conditions. Such 2f frequency in the deep interior raises the question of the mechanisms, still unresolved, that may ultimately transfer this superinertial energy into mixing at these depths.
Abstract
The authors examine the turbulent properties of a baroclinically unstable oceanic flow using primitive equation (PE) simulations with high resolution (in both horizontal and vertical directions). Resulting dynamics in the surface layers involve large Rossby numbers and significant vortical asymmetries. Furthermore, the ageostrophic divergent motions associated with small-scale surface frontogenesis are shown to significantly alter the nonlinear transfers of kinetic energy and consequently the time evolution of the surface dynamics. Such impact of the ageostrophic motions explains the emergence of the significant cyclone–anticyclone asymmetry and of a strong restratification in the upper layers, which are not allowed by the quasigeostrophic (QG) or surface quasigeostrophic (SQG) theory. However, despite this strong ageostrophic character, some of the main surface properties are surprisingly still close to the surface quasigeostrophic equilibrium. They include a noticeable shallow (≈k −2) velocity spectrum as well as a conspicuous local spectral relationship between surface kinetic energy, sea surface height, and density variance over a large range of scales (from 400 to 4 km). Furthermore, surface velocities can be remarkably diagnosed from only the surface density using SQG relations. This suggests that the validity of some specific SQG relations extends to dynamical regimes with large Rossby numbers. The interior dynamics, on the other hand, strongly differ from the surface dynamics, involving a small Rossby number, a steep (≈k −4) velocity spectrum, and a somewhat steeper density spectrum. The compensation of the surface restratification by a destratification at depth confirms a connection between the surface and the interior induced by the small-scale divergent motions.
Abstract
The authors examine the turbulent properties of a baroclinically unstable oceanic flow using primitive equation (PE) simulations with high resolution (in both horizontal and vertical directions). Resulting dynamics in the surface layers involve large Rossby numbers and significant vortical asymmetries. Furthermore, the ageostrophic divergent motions associated with small-scale surface frontogenesis are shown to significantly alter the nonlinear transfers of kinetic energy and consequently the time evolution of the surface dynamics. Such impact of the ageostrophic motions explains the emergence of the significant cyclone–anticyclone asymmetry and of a strong restratification in the upper layers, which are not allowed by the quasigeostrophic (QG) or surface quasigeostrophic (SQG) theory. However, despite this strong ageostrophic character, some of the main surface properties are surprisingly still close to the surface quasigeostrophic equilibrium. They include a noticeable shallow (≈k −2) velocity spectrum as well as a conspicuous local spectral relationship between surface kinetic energy, sea surface height, and density variance over a large range of scales (from 400 to 4 km). Furthermore, surface velocities can be remarkably diagnosed from only the surface density using SQG relations. This suggests that the validity of some specific SQG relations extends to dynamical regimes with large Rossby numbers. The interior dynamics, on the other hand, strongly differ from the surface dynamics, involving a small Rossby number, a steep (≈k −4) velocity spectrum, and a somewhat steeper density spectrum. The compensation of the surface restratification by a destratification at depth confirms a connection between the surface and the interior induced by the small-scale divergent motions.
Abstract
At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets’ formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step toward understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that nonlinear triad interactions (NLTIs) play a crucial role in the transfer of energy toward jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave are analyzed. For realistic amplitudes around 5–20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step toward the generation of a permanent jet-structured circulation and is discussed in the context of turbulent cascade theories.
Abstract
At low latitudes in the ocean, the deep currents are shaped into narrow jets flowing eastward and westward, reversing periodically with latitude between 15°S and 15°N. These jets are present from the thermocline to the bottom. The energy sources and the physical mechanisms responsible for their formation are still debated and poorly understood. This study explores the role of the destabilization of intra-annual equatorial waves in the jets’ formation process, as these waves are known to be an important energy source at low latitudes. The study focuses particularly on the role of barotropic Rossby waves as a first step toward understanding the relevant physical mechanisms. It is shown from a set of idealized numerical simulations and analytical solutions that nonlinear triad interactions (NLTIs) play a crucial role in the transfer of energy toward jet-like structures (long waves with short meridional wavelengths) that induce a zonal residual mean circulation. The sensitivity of the instability emergence and the scale selection of the jet-like secondary wave to the forced primary wave are analyzed. For realistic amplitudes around 5–20 cm s−1, the primary waves that produce the most realistic jet-like structures are zonally propagating intra-annual waves with periods between 60 and 130 days and wavelengths between 200 and 300 km. The NLTI mechanism is a first step toward the generation of a permanent jet-structured circulation and is discussed in the context of turbulent cascade theories.