Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: T. A. Black x
  • Refine by Access: All Content x
Clear All Modify Search
D. L. Spittlehouse
and
T. A. Black

Abstract

Rates of evapotranspiration from a 14 m high Douglas fir forest on the southwest coast of British Columbia were obtained using the energy balance/Bowen ratio method and an energy balance/eddy correlation method. In the former method, the Bowen ratio was measured using reversing diode psychrometers. In the latter, the sensible heat flux was obtained by eddy correlation analysis of data obtained from a fast response thermistor and Gill anemometers mounted horizontally and at 30° from the vertical. The generally low wind speed above the forest resulted in occasional stalling of the anemometers and made obtaining adequate eddy correlation data difficult. Spectral analysis of the eddy correlation data indicates that a significant fraction of the sensible heat flux was at low frequencies. The regression relationship between evapotranspiration rate obtained using the energy balance/eddy correlation method (Ee ) and that obtained using the energy balance/Bowen ratio method (Eβ ) was found to be
The experiment suggests that an eddy correlation system using mechanical anemometers is not suitable for extended water balance studies of forests where low wind speeds predominate.
Full access
E. H. Hogg
,
D. T. Price
, and
T. A. Black

Abstract

A large portion of the western Canadian interior exhibits a distinctive seasonal pattern in long-term mean surface temperatures characterized by anomalously warmer conditions in spring and autumn than would be expected from a sinusoidal model. The anomaly is greatest over the southern boreal forest of western Canada, where trembling aspen (Populus tremuloides Michx.)—a deciduous, broad-leaved species—is an important component. In this region, mean temperatures are 2°–3°C warmer in April and October but nearly 2°C cooler in June and July, relative to a best-fitting sinusoidal function. Another feature of the climate in this region is that average precipitation is low (15–30 mm month−1) from October to April but increases sharply during the summer growing season (50–100 mm month−1 from June to August). Eddy correlation and sap flow measurements in a boreal aspen forest indicate profound seasonal changes in transpiration and energy partitioning associated with the deciduous nature of the forest canopy. Latent heat (water vapor) flux reaches a maximum during the summer period when leaves are present, while sensible heat flux is highest in early spring when the forest is leafless. Thus, it is postulated that feedbacks of leaf phenology of aspen forests, which occupy a large area of the western Canadian interior, may contribute significantly to the distinctive seasonal patterns of mean temperature and precipitation that occur in this region.

Full access
D. Yap
,
T. A. Black
, and
T. R. Oke

Abstract

A yaw sphere-thermometer assembly, to measure sensible heat flux density by the eddy correlation method, was built following the design of Tanner and Thurtell. Wind tunnel experiments indicate that the sphere constant should be 1.57, which is significantly less than the theoretical value of 2.25. The effects of tilt indicate that heat fluxes may be in error by 5% per degree of tilt In unstable conditions and up to 11% per degree in stable conditions. Field comparisons of the heat fluxes measured by the yaw sphere-thermometer system and a Bowen ratio apparatus produced satisfactory agreement.

Full access
Shusen Wang
,
Yan Yang
,
Alexander P. Trishchenko
,
Alan G. Barr
,
T. A. Black
, and
Harry McCaughey

Abstract

Humidity of air is a key environmental variable in controlling the stomatal conductance (g) of plant leaves. The stomatal conductance–humidity relationships employed in the Ball–Woodrow–Berry (BWB) model and the Leuning model have been widely used in the last decade. Results of independent evaluations of the two models vary greatly. In this study, the authors develop a new diagnostic parameter that is based on canopy water vapor and CO2 fluxes to assess the response of canopy g to humidity. Using eddy-covariance flux measurements at three boreal forest sites in Canada, they critically examine the performance of the BWB and the Leuning models. The results show that the BWB model, which employs a linear relationship between g and relative humidity (hs ), leads to large underestimates of g when the air is wet. The Leuning model, which employs a nonlinear function of water vapor pressure deficit (Ds ), reduced this bias, but it still could not adequately capture the significant increase of g under the wet conditions. New models are proposed to improve the prediction of canopy g to humidity. The best performance was obtained by the model that employs a power function of Ds , followed by the model that employs a power function of relative humidity deficit (1 − hs ). The results also indicate that models based on water vapor pressure deficit generally performed better than those based on relative humidity. This is consistent with the hypothesis that the stomatal aperture responds to leaf water loss because water vapor pressure deficit rather than relative humidity directly affects the transpiration rate of canopy leaves.

Full access
Sophie C. Lewis
,
Stephanie A.P. Blake
,
Blair Trewin
,
Mitchell T. Black
,
Andrew J. Dowdy
,
Sarah E. Perkins-Kirkpatrick
,
Andrew D. King
, and
Jason J. Sharples
Free access
Gerhard Theurich
,
C. DeLuca
,
T. Campbell
,
F. Liu
,
K. Saint
,
M. Vertenstein
,
J. Chen
,
R. Oehmke
,
J. Doyle
,
T. Whitcomb
,
A. Wallcraft
,
M. Iredell
,
T. Black
,
A. M. Da Silva
,
T. Clune
,
R. Ferraro
,
P. Li
,
M. Kelley
,
I. Aleinov
,
V. Balaji
,
N. Zadeh
,
R. Jacob
,
B. Kirtman
,
F. Giraldo
,
D. McCarren
,
S. Sandgathe
,
S. Peckham
, and
R. Dunlap IV

Abstract

The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users.

The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.

Full access
E. J. Walsh
,
C. W. Wright
,
D. Vandemark
,
W. B. Krabill
,
A. W. Garcia
,
S. H. Houston
,
S. T. Murillo
,
M. D. Powell
,
P. G. Black
, and
F. D. Marks Jr.

Abstract

The NASA Scanning Radar Altimeter (SRA) flew aboard one of the NOAA WP-3D hurricane research aircraft to document the sea surface directional wave spectrum in the region between Charleston, South Carolina, and Cape Hatteras, North Carolina, as Hurricane Bonnie was making landfall near Wilmington, North Carolina, on 26 August 1998. Two days earlier, the SRA had documented the hurricane wave field spatial variation in open water when Bonnie was 400 km east of Abaco Island, Bahamas. Bonnie was similar in size during the two flights. The maximum wind speed was lower during the landfall flight (39 m s−1) than it had been during the first flight (46 m s−1). Also, Bonnie was moving faster prior to landfall (9.5 m s−1) than when it was encountered in the open ocean (5 m s−1). The open ocean wave height spatial variation indicated that Hurricane Bonnie would have produced waves of 10 m height on the shore northeast of Wilmington had it not been for the continental shelf. The gradual shoaling distributed the wave energy dissipation process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 m.

Despite the dramatic differences in wave height caused by shoaling and the differences in the wind field and forward speed of the hurricane, there was a remarkable agreement in the wave propagation directions for the various wave components on the two days. This suggests that, in spite of its complexity, the directional wave field in the vicinity of a hurricane may be well behaved and lend itself to be modeled by a few parameters, such as the maximum wind speed, the radii of the maximum and gale force winds, and the recent movement of the storm.

Full access

Nasa's Tropical Cloud Systems and Processes Experiment

Investigating Tropical Cyclogenesis and Hurricane Intensity Change

J. Halverson
,
M. Black
,
S. Braun
,
D. Cecil
,
M. Goodman
,
A. Heymsfield
,
G . Heymsfield
,
R. Hood
,
T. Krishnamurti
,
G. McFarquhar
,
M. J. Mahoney
,
J. Molinari
,
R. Rogers
,
J. Turk
,
C. Velden
,
D.-L. Zhang
,
E. Zipser
, and
R. Kakar

In July 2005, the National Aeronautics and Space Administration investigated tropical cyclogenesis, hurricane structure, and intensity change in the eastern North Pacific and western Atlantic using its ER-2 high-altitude research aircraft. The campaign, called the Tropical Cloud Systems and Processes (TCSP) experiment, was conducted in conjunction with the National Oceanic and Atmospheric Administration/Hurricane Research Division's Intensity Forecasting Experiment. A number of in situ and remote sensor datasets were collected inside and above four tropical cyclones representing a broad spectrum of tropical cyclone intensity and development in diverse environments. While the TCSP datasets directly address several key hypotheses governing tropical cyclone formation, including the role of vertical wind shear, dynamics of convective bursts, and upscale growth of the initial vortex, two of the storms sampled were also unusually strong, early season storms. Highlights from the genesis missions are described in this article, along with some of the unexpected results from the campaign. Interesting observations include an extremely intense, highly electrified convective tower in the eyewall of Hurricane Emily and a broad region of mesoscale subsidence detected in the lower stratosphere over landfalling Tropical Storm Gert.

Full access
Dean Roemmich
,
Jeffrey T. Sherman
,
Russ E. Davis
,
Kyle Grindley
,
Michael McClune
,
Charles J. Parker
,
David N. Black
,
Nathalie Zilberman
,
Sarah G. Purkey
,
Philip J. H. Sutton
, and
John Gilson

Abstract

Deployment of Deep Argo regional pilot arrays is underway as a step toward a global array of 1250 surface-to-bottom profiling floats embedded in the upper-ocean (2000 m) Argo Program. Of the 80 active Deep Argo floats as of July 2019, 55 are Deep Sounding Oceanographic Lagrangian Observer (SOLO) 6000-m instruments, and the rest are composed of three additional models profiling to either 4000 or 6000 m. Early success of the Deep SOLO is owed partly to its evolution from the Core Argo SOLO-II. Here, Deep SOLO design choices are described, including the spherical glass pressure housing, the hydraulics system, and the passive bottom detection system. Operation of Deep SOLO is flexible, with the mission parameters being adjustable from shore via Iridium communications. Long lifetime is a key element in sustaining a global array, and Deep SOLO combines a long battery life of over 200 cycles to 6000 m with robust operation and a low failure rate. The scientific value of Deep SOLO is illustrated, including examples of its ability (i) to observe large-scale spatial and temporal variability in deep ocean temperature and salinity, (ii) to sample newly formed water masses year-round and within a few meters of the sea floor, and (iii) to explore the poorly known abyssal velocity field and deep circulation of the World Ocean. Deep SOLO’s full-depth range and its potential for global coverage are critical attributes for complementing the Core Argo Program and achieving these objectives.

Open access
E.A. D'Asaro
,
P. G. Black
,
L. R. Centurioni
,
Y.-T. Chang
,
S. S. Chen
,
R. C. Foster
,
H. C. Graber
,
P. Harr
,
V. Hormann
,
R.-C. Lien
,
I.-I. Lin
,
T. B. Sanford
,
T.-Y. Tang
, and
C.-C. Wu

Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.

Full access