Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: T. Coleman x
  • All content x
Clear All Modify Search
Timothy A. Coleman, Kevin R. Knupp, and John T. Tarvin

Abstract

The electromagnetic pulses (EMPs) associated with two lightning flashes on 22 July 2008 in central Alabama produced audible clicking sounds. These clicks were observed almost simultaneously with the lightning flashes, but a significant period of time before the thunder. The lightning flashes and associated sounds were recorded in digital video and audio by a video camera. Based on theories primarily developed to explain reports of sounds associated with aurora and meteors entering the earth’s atmosphere, it appears that the sounds were associated with transduction of the electromagnetic energy at audible frequencies into vibrations in objects near the camera. Coronal discharges are also possible. Examination of spectrograms of the clicks and the subsequent thunder, and comparison to measurements of the normalized light intensity in each frame of video, show that the clicks must have been associated with sounds in nearby objects. Therefore, the sounds were associated with the lightning EMP.

Full access
F. M. Ralph, T. Coleman, P. J. Neiman, R. J. Zamora, and M. D. Dettinger

Abstract

This study is motivated by diverse needs for better forecasts of extreme precipitation and floods. It is enabled by unique hourly observations collected over six years near California’s Russian River and by recent advances in the science of atmospheric rivers (ARs). This study fills key gaps limiting the prediction of ARs and, especially, their impacts by quantifying the duration of AR conditions and the role of duration in modulating hydrometeorological impacts. Precursor soil moisture conditions and their relationship to streamflow are also shown. On the basis of 91 well-observed events during 2004–10, the study shows that the passage of ARs over a coastal site lasted 20 h on average and that 12% of the AR events exceeded 30 h. Differences in storm-total water vapor transport directed up the mountain slope contribute 74% of the variance in storm-total rainfall across the events and 61% of the variance in storm-total runoff volume. ARs with double the composite mean duration produced nearly 6 times greater peak streamflow and more than 7 times the storm-total runoff volume. When precursor soil moisture was less than 20%, even heavy rainfall did not lead to significant streamflow. Predicting which AR events are likely to produce extreme impacts on precipitation and runoff requires accurate prediction of AR duration at landfall and observations of precursor soil moisture conditions.

Full access
H. M. Christensen, Judith Berner, Danielle R. B. Coleman, and T. N. Palmer

Abstract

El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical Pacific. However, the models in the ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) have large deficiencies in ENSO amplitude, spatial structure, and temporal variability. The use of stochastic parameterizations as a technique to address these pervasive errors is considered. The multiplicative stochastically perturbed parameterization tendencies (SPPT) scheme is included in coupled integrations of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4). The SPPT scheme results in a significant improvement to the representation of ENSO in CAM4, improving the power spectrum and reducing the magnitude of ENSO toward that observed. To understand the observed impact, additive and multiplicative noise in a simple delayed oscillator (DO) model of ENSO is considered. Additive noise results in an increase in ENSO amplitude, but multiplicative noise can reduce the magnitude of ENSO, as was observed for SPPT in CAM4. In light of these results, two complementary mechanisms are proposed by which the improvement occurs in CAM. Comparison of the coupled runs with a set of atmosphere-only runs indicates that SPPT first improve the variability in the zonal winds through perturbing the convective heating tendencies, which improves the variability of ENSO. In addition, SPPT improve the distribution of westerly wind bursts (WWBs), important for initiation of El Niño events, by increasing the stochastic component of WWB and reducing the overly strong dependency on SST compared to the control integration.

Full access
K. R. Knupp, T. Coleman, D. Phillips, R. Ware, D. Cimini, F. Vandenberghe, J. Vivekanandan, and E. Westwater

Abstract

Short-period (1–5 min) temperature and humidity soundings up to 10-km height are retrieved from ground-based 12-channel microwave radiometer profiler (MWRP) observations. In contrast to radiosondes, the radiometric retrievals provide very high temporal resolution (1 min or less) of thermodynamic profiles, but the vertical resolution, which declines in proportion to the height above ground level, is lower. The high temporal resolution is able to resolve detailed meso-γ-scale thermodynamic and limited microphysical features of various rapidly changing mesoscale and/or hazardous weather phenomena. To illustrate the MWRP capabilities and potential benefits to research and operational activities, the authors present example radiometric retrievals from a variety of dynamic weather phenomena including upslope supercooled fog, snowfall, a complex cold front, a nocturnal bore, and a squall line accompanied by a wake low and other rapid variations in low-level water vapor and temperature.

Full access
A. B. White, M. L. Anderson, M. D. Dettinger, F. M. Ralph, A. Hinojosa, D. R. Cayan, R. K. Hartman, D. W. Reynolds, L. E. Johnson, T. L. Schneider, R. Cifelli, Z. Toth, S. I. Gutman, C. W. King, F. Gehrke, P. E. Johnston, C. Walls, D. Mann, D. J. Gottas, and T. Coleman

Abstract

During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for the water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. To improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, are required. Here, the authors describe how California is addressing their most important and costliest environmental issue—water management—in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

Full access
Kevin R. Knupp, Todd A. Murphy, Timothy A. Coleman, Ryan A. Wade, Stephanie A. Mullins, Christopher J. Schultz, Elise V. Schultz, Lawrence Carey, Adam Sherrer, Eugene W. McCaul Jr., Brian Carcione, Stephen Latimer, Andy Kula, Kevin Laws, Patrick T. Marsh, and Kim Klockow

By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded $4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research on this case.

Full access